Package 'tidyterra'

Title: 'tidyverse' Methods and 'ggplot2' Helpers for 'terra' Objects
Description: Extension of the 'tidyverse' for 'SpatRaster' and 'SpatVector' objects of the 'terra' package. It includes also new 'geom_' functions that provide a convenient way of visualizing 'terra' objects with 'ggplot2'.
Authors: Diego Hernangómez [aut, cre, cph] , Dewey Dunnington [ctb] (<https://orcid.org/0000-0002-9415-4582>, for ggspatial code), ggplot2 authors [cph] (for contour code)
Maintainer: Diego Hernangómez <[email protected]>
License: MIT + file LICENSE
Version: 0.6.1.9000
Built: 2024-12-17 09:30:26 UTC
Source: https://github.com/dieghernan/tidyterra

Help Index


Order a SpatVector using column values

Description

arrange.SpatVector() orders the geometries of a SpatVector by the values of selected columns.

Usage

## S3 method for class 'SpatVector'
arrange(.data, ..., .by_group = FALSE)

Arguments

.data

A SpatVector created with terra::vect().

...

<data-masking> Variables, or functions of variables. Use desc() to sort a variable in descending order.

.by_group

If TRUE, will sort first by grouping variable. Applies to grouped SpatVector only (see group_by.SpatVector()).

Value

A SpatVector object.

terra equivalent

terra::sort()

Methods

Implementation of the generic dplyr::arrange() function for SpatVector class.

See Also

dplyr::arrange()

Other single table verbs: filter.Spat, mutate.Spat, rename.Spat, select.Spat, slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on rows: distinct.SpatVector(), filter.Spat, slice.Spat

Other dplyr methods: bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
library(dplyr)

v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))


# Single variable

v %>%
  arrange(desc(iso2))


# Two variables
v %>%
  mutate(even = as.double(cpro) %% 2 == 0, ) %>%
  arrange(desc(even), desc(iso2))


# With new variables
v %>%
  mutate(area_geom = terra::expanse(v)) %>%
  arrange(area_geom)

Get cell number, row and column from a SpatRaster

Description

as_coordinates() can be used to obtain the position of each cell on the SpatRaster matrix.

Usage

as_coordinates(x, as.raster = FALSE)

Arguments

x

A SpatRaster object.

as.raster

If TRUE, the result is a SpatRaster object with three layers indicating the position of each cell (cell number, row and column).

Value

A tibble or a SpatRaster (if as.raster = TRUE) with the same number of rows (or cells) than the number of cells in x.

When as.raster = TRUE the resulting SpatRaster has the same crs, extension and resolution than x

See Also

slice.SpatRaster()

Coercing objects: as_sf(), as_spatraster(), as_spatvector(), as_tibble.Spat, fortify.Spat

Examples

library(terra)

f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

r <- rast(f)

as_coordinates(r)
as_coordinates(r, as.raster = TRUE)

as_coordinates(r, as.raster = TRUE) %>% plot()

Coerce a SpatVector to a sf object

Description

as_sf() turns a SpatVector to sf object. This is a wrapper of sf::st_as_sf() with the particularity that the groups created with group_by.SpatVector() are preserved.

Usage

as_sf(x, ...)

Arguments

x

A SpatVector.

...

additional arguments passed on to sf::st_as_sf().

Value

A sf object object with an additional tbl_df class, for pretty printing method.

See Also

Coercing objects: as_coordinates(), as_spatraster(), as_spatvector(), as_tibble.Spat, fortify.Spat

Examples

library(terra)

f <- system.file("extdata/cyl.gpkg", package = "tidyterra")
v <- terra::vect(f)

# This is ungrouped
v
is_grouped_spatvector(v)

# Get an ungrouped data
a_sf <- as_sf(v)

dplyr::is_grouped_df(a_sf)

# Grouped

v$gr <- c("C", "A", "A", "B", "A", "B", "B")
v$gr2 <- rep(c("F", "G", "F"), 3)

gr_v <- group_by(v, gr, gr2)

gr_v
is_grouped_spatvector(gr_v)

group_data(gr_v)

# A sf

a_gr_sf <- as_sf(gr_v)

dplyr::is_grouped_df(a_gr_sf)

group_data(a_gr_sf)

Coerce a data frame to SpatRaster

Description

as_spatraster() turns an existing data frame or tibble into a SpatRaster. This is a wrapper of terra::rast() S4 method for signature data.frame.

Usage

as_spatraster(x, ..., xycols = 1:2, crs = "", digits = 6)

Arguments

x

A tibble or data frame.

...

additional arguments passed on to terra::rast().

xycols

A vector of integers of length 2 determining the position of the columns that hold the x and y coordinates.

crs

A crs on several formats (PROJ.4, WKT, EPSG code, ..) or and spatial object from sf or terra. that includes the target coordinate reference system. See pull_crs() and Details.

digits

integer to set the precision for detecting whether points are on a regular grid (a low number of digits is a low precision).

Details

If no crs is provided and the tibble has been created with the method as_tibble.SpatRaster(), the crs is inferred from attr(x, "crs").

Value

A SpatRaster.

terra equivalent

terra::rast() (see S4 method for signature data.frame).

See Also

pull_crs() for retrieving crs, and the corresponding utils sf::st_crs() and terra::crs().

Coercing objects: as_coordinates(), as_sf(), as_spatvector(), as_tibble.Spat, fortify.Spat

Examples

library(terra)

r <- rast(matrix(1:90, ncol = 3), crs = "EPSG:3857")

r

# Create tibble
as_tbl <- as_tibble(r, xy = TRUE)

as_tbl

# From tibble
newrast <- as_spatraster(as_tbl, crs = "EPSG:3857")
newrast

Method for coercing objects to SpatVector

Description

as_spatvector() turns an existing object into a SpatVector. This is a wrapper of terra::vect() S4 method for signature data.frame.

Usage

as_spatvector(x, ...)

## S3 method for class 'data.frame'
as_spatvector(x, ..., geom = c("lon", "lat"), crs = "")

## S3 method for class 'sf'
as_spatvector(x, ...)

## S3 method for class 'sfc'
as_spatvector(x, ...)

## S3 method for class 'SpatVector'
as_spatvector(x, ...)

Arguments

x

A tibble, data frame or sf object of class sf or sfc.

...

additional arguments passed on to terra::vect().

geom

character. The field name(s) with the geometry data. Either two names for x and y coordinates of points, or a single name for a single column with WKT geometries.

crs

A crs on several formats (PROJ.4, WKT, EPSG code, ..) or and spatial object from sf or terra that includes the target coordinate reference system. See pull_crs() and Details.

Details

This function differs from terra::vect() on the following:

  • geometries with NA or "" values are removed prior to conversion

  • If x is a grouped data frame (see dplyr::group_by()) the grouping vars are transferred and a "grouped" SpatVector is created (see group_by.SpatVector()).

  • If no crs is provided and the tibble has been created with the method as_tibble.SpatVector(), the crs is inferred from attr(x, "crs").

  • Handles correctly the conversion of EMPTY geometries between sf and terra.

Value

A SpatVector.

terra equivalent

terra::vect()

See Also

pull_crs() for retrieving crs, and the corresponding utils sf::st_crs() and terra::crs().

Coercing objects: as_coordinates(), as_sf(), as_spatraster(), as_tibble.Spat, fortify.Spat

Examples

library(terra)

v <- vect(matrix(1:80, ncol = 2), crs = "EPSG:3857")

v$cat <- sample(LETTERS[1:4], size = nrow(v), replace = TRUE)

v

# Create tibble
as_tbl <- as_tibble(v, geom = "WKT")

as_tbl

# From tibble
newvect <- as_spatvector(as_tbl, geom = "geometry", crs = "EPSG:3857")
newvect

Coerce a SpatVector or SpatRaster object to data frames

Description

as_tibble() methods for SpatRaster and SpatVector objects.

Usage

## S3 method for class 'SpatRaster'
as_tibble(x, ..., xy = FALSE, na.rm = FALSE, .name_repair = "unique")

## S3 method for class 'SpatVector'
as_tibble(x, ..., geom = NULL, .name_repair = "unique")

Arguments

x

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

...

Arguments passed on to terra::as.data.frame().

xy

logical. If TRUE, the coordinates of each raster cell are included

na.rm

logical. If TRUE, cells that have a NA value in at least one layer are removed. If the argument is set to NA only cells that have NA values in all layers are removed

.name_repair

Treatment of problematic column names:

  • "minimal": No name repair or checks, beyond basic existence.

  • "unique": Make sure names are unique and not empty.

  • "check_unique": (default value), no name repair, but check they are unique.

  • "universal": Make the names unique and syntactic.

  • a function: apply custom name repair (e.g., .name_repair = make.names for names in the style of base R).

  • A purrr-style anonymous function, see rlang::as_function().

geom

character or NULL. If not NULL, either "WKT" or "HEX", to get the geometry included in Well-Known-Text or hexadecimal notation. If x has point geometry, it can also be "XY" to add the coordinates of each point

Value

A tibble.

terra equivalent

terra::as.data.frame()

Methods

Implementation of the generic tibble::as_tibble() function.

SpatRaster and SpatVector

The tibble is returned with an attribute including the crs of the initial object in WKT format (see pull_crs()).

About layer/column names

When coercing SpatRaster objects to data frames, x and y names are reserved for geographic coordinates of each cell of the SpatRaster It should be also noted that terra allows layers with duplicated names.

In the process of coercing a SpatRaster to a tibble, tidyterra may rename the layers of your SpatRaster for overcoming this issue. Specifically, layers may be renamed on the following cases:

  • Layers with duplicated names.

  • When coercing to a tibble, if xy = TRUE, layers named x or y would be renamed.

  • When working with tidyverse methods (i.e. filter.SpatRaster()), the latter would happen as well.

tidyterra would display a message informing of the changes on the names of the layer.

The same issue happens for SpatVector with names geometry (when geom = c("WKT", "HEX")) and x, y (when geom = "XY"). These are reserved names representing the geometry of the SpatVector (see terra::as.data.frame()). If geom is not NULL then the logic described for SpatRaster would apply as well for the columns of the SpatVector.

See Also

tibble::as_tibble(), terra::as.data.frame()

Coercing objects: as_coordinates(), as_sf(), as_spatraster(), as_spatvector(), fortify.Spat

Examples

library(terra)
# SpatRaster
f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
r <- rast(f)

as_tibble(r, na.rm = TRUE)

as_tibble(r, xy = TRUE)

# SpatVector

f <- system.file("extdata/cyl.gpkg", package = "tidyterra")
v <- vect(f)

as_tibble(v)

Create a complete ggplot for ⁠Spat*⁠ objects

Description

autoplot() uses ggplot2 to draw plots as the ones produced by terra::plot()/terra::plotRGB() in a single command.

Usage

## S3 method for class 'SpatRaster'
autoplot(
  object,
  ...,
  rgb = NULL,
  use_coltab = NULL,
  facets = NULL,
  nrow = NULL,
  ncol = 2
)

## S3 method for class 'SpatVector'
autoplot(object, ...)

Arguments

object

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

...

other arguments passed to geom_spatraster(), geom_spatraster_rgb() or geom_spatvector().

rgb

Logical. Should be plotted as a RGB image? If NULL (the default) autoplot.SpatRaster() would try to guess.

use_coltab

Logical. Should be plotted with the corresponding terra::coltab()? If NULL (the default) autoplot.SpatRaster() would try to guess. See also scale_fill_coltab().

facets

Logical. Should facets be displayed? If NULL (the default) autoplot.SpatRaster() would try to guess.

nrow, ncol

Number of rows and columns on the facet.

Details

Implementation of ggplot2::autoplot() method.

Value

A ggplot2 layer

Methods

Implementation of the generic ggplot2::autoplot() function.

SpatRaster

Uses geom_spatraster() or geom_spatraster_rgb().

SpatVector

Uses geom_spatvector(). Labels can be placed with geom_spatvector_text() or geom_spatvector_label().

See Also

ggplot2::autoplot()

Other ggplot2 utils: fortify.Spat, geom_spat_contour, geom_spatraster(), geom_spatraster_rgb(), ggspatvector, stat_spat_coordinates()

Other ggplot2 methods: fortify.Spat

Examples

file_path <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

library(terra)
temp <- rast(file_path)

library(ggplot2)
autoplot(temp)


# With a tile

tile <- system.file("extdata/cyl_tile.tif", package = "tidyterra") %>%
  rast()

autoplot(tile)

# With coltabs

ctab <- system.file("extdata/cyl_era.tif", package = "tidyterra") %>%
  rast()

autoplot(ctab)

#  With vectors
v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))
autoplot(v)

v %>% autoplot(aes(fill = cpro)) +
  geom_spatvector_text(aes(label = iso2)) +
  coord_sf(crs = 25829)

Bind multiple SpatVector sf and data frames objects by column

Description

Bind any number of SpatVector, data frames and sf object by column, making a wider result. This is similar to do.call(cbind, dfs).

Where possible prefer using a join to combine SpatVector and data frames objects. bind_spat_cols() binds the rows in order in which they appear so it is easy to create meaningless results without realizing it.

Usage

bind_spat_cols(
  ...,
  .name_repair = c("unique", "universal", "check_unique", "minimal")
)

Arguments

...

Objects to combine. The first argument should be a SpatVector and each of the subsequent arguments can either be a SpatVector, a sf object or a data frame. Inputs are recycled to the same length, then matched by position.

.name_repair

One of "unique", "universal", or "check_unique". See dplyr::bind_cols() for Details.

Value

A SpatVector with the corresponding columns. The geometry and CRS would correspond to the the first SpatVector of ....

terra equivalent

cbind() method

Methods

Implementation of the dplyr::bind_rows() function for SpatVector objects. Note that for the second and subsequent arguments on ... the geometry would not be cbinded, and only the data frame (-ish) columns would be kept.

See Also

dplyr::bind_cols()

Other dplyr verbs that operate on pairs Spat*/data.frame: bind_rows.SpatVector, filter-joins.SpatVector, mutate-joins.SpatVector

Other dplyr methods: arrange.SpatVector(), bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
sv <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))
df2 <- data.frame(letters = letters[seq_len(nrow(sv))])

# Data frame
bind_spat_cols(sv, df2)


# Another SpatVector
bind_spat_cols(sv[1:2, ], sv[3:4, ])

# sf objects
sfobj <- sf::read_sf(system.file("shape/nc.shp", package = "sf"))

bind_spat_cols(sv[1:9, ], sfobj[1:9, ])

# Mixed

end <- bind_spat_cols(sv, sfobj[seq_len(nrow(sv)), 1:2], df2)

end
glimpse(end)

# Row sizes must be compatible when column-binding
try(bind_spat_cols(sv, sfobj))

Bind multiple SpatVector, sf/sfc and data frames objects by row

Description

Bind any number of SpatVector, data frames and sf/sfc objects by row, making a longer result. This is similar to do.call(rbind, dfs), but the output will contain all columns that appear in any of the inputs.

Usage

bind_spat_rows(..., .id = NULL)

Arguments

...

Objects to combine. The first argument should be a SpatVector and each of the subsequent arguments can either be a SpatVector, a sf/sfc object or a data frame. Columns are matched by name, and any missing columns will be filled with NA.

.id

The name of an optional identifier column. Provide a string to create an output column that identifies each input. The column will use names if available, otherwise it will use positions.

Value

A SpatVector of the same type as the first element of ....

terra equivalent

rbind() method

Methods

Implementation of the dplyr::bind_rows() function for SpatVector objects.

The first element of ... should be a SpatVector. Subsequent elements may be SpatVector, sf/sfc objects or data frames:

  • If subsequent SpatVector/sf/sfc objects present a different CRS than the first element, those elements would be reprojected to the CRS of the first element with a message.

  • If any element of ... is a tibble/data frame the rows would be cbinded with empty geometries with a message.

See Also

dplyr::bind_rows()

Other dplyr verbs that operate on pairs Spat*/data.frame: bind_cols.SpatVector, filter-joins.SpatVector, mutate-joins.SpatVector

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

v1 <- v[1, "cpro"]
v2 <- v[3:5, c("name", "iso2")]

# You can supply individual SpatVector as arguments:
bind_spat_rows(v1, v2)

# When you supply a column name with the `.id` argument, a new
# column is created to link each row to its original data frame
bind_spat_rows(v1, v2, .id = "id")


# Use with sf
sfobj <- sf::st_as_sf(v2[1, ])

sfobj

bind_spat_rows(v1, sfobj)

# Would reproject with a message on different CRS
sfobj_3857 <- as_spatvector(sfobj) %>% project("EPSG:3857")

bind_spat_rows(v1, sfobj_3857)

# And with data frames with a message
data("mtcars")
bind_spat_rows(v1, sfobj, mtcars, .id = "id2")


# Use lists
bind_spat_rows(list(v1[1, ], sfobj[1:2, ]))

# Or named list combined with .id
bind_spat_rows(list(
  SpatVector = v1[1, ], sf = sfobj[1, ],
  mtcars = mtcars[1, ]
), .id = "source")

Compare attributes of two SpatRaster objects

Description

Two SpatRaster objects are compatible (in terms of combining layers) if the crs, extent and resolution are similar. In those cases you can combine the objects simply as c(x, y).

This function compares those attributes informing of the results. See Solving issues section for minimal guidance.

Usage

compare_spatrasters(x, y, digits = 6)

Arguments

x, y

SpatRaster objects

digits

Integer to set the precision for comparing the extent and the resolution.

Value

A invisible logical TRUE/FALSE indicating if the SpatRaster objects are compatible, plus an informative message flagging the issues found (if any).

terra equivalent

terra::identical()

Solving issues

See Also

terra::identical()

Other helpers: is_grouped_spatvector(), is_regular_grid(), pull_crs()

Examples

library(terra)

x <- rast(matrix(1:90, ncol = 3), crs = "EPSG:3857")

# Nothing
compare_spatrasters(x, x)

# Different crs
y_nocrs <- x
crs(y_nocrs) <- NA

compare_spatrasters(x, y_nocrs)

# Different extent
compare_spatrasters(x, x[1:10, , drop = FALSE])

# Different resolution
y_newres <- x

res(y_newres) <- res(x) / 2
compare_spatrasters(x, y_newres)

# Everything

compare_spatrasters(x, project(x, "epsg:3035"))

Count the observations in each SpatVector group

Description

count() lets you quickly count the unique values of one or more variables:

  • df %>% count(a, b) is roughly equivalent to df %>% group_by(a, b) %>% summarise(n = n()).

  • count() is paired with tally(), a lower-level helper that is equivalent to df %>% summarise(n = n()).

Usage

## S3 method for class 'SpatVector'
count(
  x,
  ...,
  wt = NULL,
  sort = FALSE,
  name = NULL,
  .drop = group_by_drop_default(x),
  .dissolve = TRUE
)

## S3 method for class 'SpatVector'
tally(x, wt = NULL, sort = FALSE, name = NULL)

Arguments

x

A SpatVector.

...

<data-masking> Variables to group by.

wt

Not implemented on this method

sort

If TRUE, will show the largest groups at the top.

name

The name of the new column in the output.

If omitted, it will default to n. If there's already a column called n, it will use nn. If there's a column called n and nn, it'll use nnn, and so on, adding ns until it gets a new name.

.drop

Handling of factor levels that don't appear in the data, passed on to group_by().

For count(): if FALSE will include counts for empty groups (i.e. for levels of factors that don't exist in the data).

[Deprecated] For add_count(): deprecated since it can't actually affect the output.

.dissolve

logical. Should borders between aggregated geometries be dissolved?

Value

A SpatVector object with an additional attribute.

terra equivalent

terra::aggregate()

Methods

Implementation of the generic dplyr::count() family functions for SpatVector objects.

tally() will always return a disaggregated geometry while count() can handle this. See also summarise.SpatVector().

See Also

dplyr::count(), dplyr::tally()

Other dplyr verbs that operate on group of rows: group-by.SpatVector, rowwise.SpatVector(), summarise.SpatVector()

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("ex/lux.shp", package = "terra")
p <- vect(f)


p %>% count(NAME_1, sort = TRUE)

p %>% count(NAME_1, sort = TRUE)

p %>% count(pop = ifelse(POP < 20000, "A", "B"))

# tally() is a lower-level function that assumes you've done the grouping
p %>% tally()

p %>%
  group_by(NAME_1) %>%
  tally()

# Dissolve geometries by default

library(ggplot2)
p %>%
  count(NAME_1) %>%
  ggplot() +
  geom_spatvector(aes(fill = n))

# Opt out
p %>%
  count(NAME_1, .dissolve = FALSE, sort = TRUE) %>%
  ggplot() +
  geom_spatvector(aes(fill = n))

Cross-blended hypsometric tints

Description

A tibble including the color map of 4 gradient palettes. All the palettes includes also a definition of colors limits in terms of elevation (meters), that can be used with ggplot2::scale_fill_gradientn().

Format

A tibble of 41 rows and 6 columns. with the following fields:

pal

Name of the palette.

limit

Recommended elevation limit (in meters) for each color.

r

Value of the red channel (RGB color mode).

g

Value of the green channel (RGB color mode).

b

Value of the blue channel (RGB color mode).

hex

Hex code of the color.

Details

From Patterson & Jenny (2011):

More recently, the role and design of hypsometric tints have come under scrutiny. One reason for this is the concern that people misread elevation colors as climate or vegetation information. Cross-blended hypsometric tints, introduced in 2009, are a partial solution to this problem. They use variable lowland colors customized to match the differing natural environments of world regions, which merge into one another.

Source

Derived from:

  • Patterson, T., & Jenny, B. (2011). The Development and Rationale of Cross-blended Hypsometric Tints. Cartographic Perspectives, (69), 31 - 46. doi:10.14714/CP69.20.

See Also

scale_fill_cross_blended_c()

Other datasets: grass_db, hypsometric_tints_db, princess_db, volcano2

Examples

data("cross_blended_hypsometric_tints_db")

cross_blended_hypsometric_tints_db

# Select a palette
warm <- cross_blended_hypsometric_tints_db %>%
  filter(pal == "warm_humid")

f <- system.file("extdata/asia.tif", package = "tidyterra")
r <- terra::rast(f)

library(ggplot2)

p <- ggplot() +
  geom_spatraster(data = r) +
  labs(fill = "elevation")

p +
  scale_fill_gradientn(colors = warm$hex)

# Use with limits
p +
  scale_fill_gradientn(
    colors = warm$hex,
    values = scales::rescale(warm$limit),
    limit = range(warm$limit),
    na.value = "lightblue"
  )

Keep distinct/unique rows and geometries of SpatVector objects

Description

Keep only unique/distinct rows and geometries from a SpatVector.

Usage

## S3 method for class 'SpatVector'
distinct(.data, ..., .keep_all = FALSE)

Arguments

.data

A SpatVector created with terra::vect().

...

<data-masking> Optional variables to use when determining uniqueness. If there are multiple rows for a given combination of inputs, only the first row will be preserved. If omitted, will use all variables in the data frame. There is a reserved variable name, geometry, that would remove duplicate geometries. See Methods.

.keep_all

If TRUE, keep all variables in .data. If a combination of ... is not distinct, this keeps the first row of values.

Value

A SpatVector object.

terra equivalent

terra::unique()

Methods

Implementation of the generic dplyr::distinct() function.

SpatVector

It is possible to remove duplicate geometries including the geometry variable explicitly in the ... call. See Examples.

See Also

dplyr::distinct(), terra::unique()

Other dplyr verbs that operate on rows: arrange.SpatVector(), filter.Spat, slice.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)

v <- vect(system.file("ex/lux.shp", package = "terra"))

# Create a vector with dups
v <- v[sample(seq_len(nrow(v)), 100, replace = TRUE), ]
v$gr <- sample(LETTERS[1:3], 100, replace = TRUE)

# All duplicates
ex1 <- distinct(v)
ex1

nrow(ex1)

# Duplicates by NAME_1
ex2 <- distinct(v, gr)
ex2
nrow(ex2)

# Same but keeping all cols
ex2b <- distinct(v, gr, .keep_all = TRUE)
ex2b
nrow(ex2b)


# Unique geometries
ex3 <- distinct(v, geometry)

ex3
nrow(ex3)
# Same as terra::unique()
terra::unique(ex3)

# Unique keeping info
distinct(v, geometry, .keep_all = TRUE)

Drop attributes of ⁠Spat*⁠ objects containing missing values

Description

  • SpatVector: drop_na() method drops geometries where any attribute specified by ... contains a missing value.

  • SpatRaster: drop_na() method drops cells where any layer specified by ... contains a missing value.

Usage

## S3 method for class 'SpatVector'
drop_na(data, ...)

## S3 method for class 'SpatRaster'
drop_na(data, ...)

Arguments

data

A SpatVector created with terra::vect() or a SpatRaster terra::rast().

...

<tidy-select> Attributes to inspect for missing values. If empty, all attributes are used.

Value

A ⁠Spat*⁠ object of the same class than data. See Methods.

terra equivalent

terra::trim()

Methods

Implementation of the generic tidyr::drop_na() function.

SpatVector

The implementation of this method is performed on a by-attribute basis, meaning that NAs are assessed on the attributes (columns) of each vector (rows). The result is a SpatVector with potentially less geometries than the input.

SpatRaster

[Questioning]

Actual implementation of ⁠drop_na().SpatRaster⁠ can be understood as a masking method based on the values of the layers (see terra::mask()).

SpatRaster layers are considered as columns and SpatRaster cells as rows, so rows (cells) with any NA value on any layer would get a NA value. It is possible also to mask the cells (rows) based on the values of specific layers (columns).

drop_na() would effectively remove outer cells that are NA (see terra::trim()), so the extent of the resulting object may differ of the extent of the input (see terra::resample() for more info).

Check the Examples to have a better understanding of this method.

Feedback needed!

Visit https://github.com/dieghernan/tidyterra/issues. The implementation of this method for SpatRaster may change in the future.

See Also

tidyr::drop_na()

Other tidyr verbs for handling missing values: fill.SpatVector(), replace_na.Spat

Other tidyr methods: fill.SpatVector(), pivot_longer.SpatVector(), pivot_wider.SpatVector(), replace_na.Spat

Examples

library(terra)

f <- system.file("extdata/cyl.gpkg", package = "tidyterra")

v <- terra::vect(f)

# Add NAs
v <- v %>% mutate(iso2 = ifelse(cpro <= "09", NA, cpro))

# Init
plot(v, col = "red")

# Mask with lyr.1
v %>%
  drop_na(iso2) %>%
  plot(col = "red")
# SpatRaster method


r <- rast(
  crs = "EPSG:3857",
  extent = c(0, 10, 0, 10),
  nlyr = 3,
  resolution = c(2.5, 2.5)
)
terra::values(r) <- seq_len(ncell(r) * nlyr(r))



# Add NAs
r[r > 13 & r < 22 | r > 31 & r < 45] <- NA

# Init
plot(r, nc = 3)

# Mask with lyr.1
r %>%
  drop_na(lyr.1) %>%
  plot(nc = 3)

# Mask with lyr.2
r %>%
  drop_na(lyr.2) %>%
  plot(nc = 3)

# Mask with lyr.3
r %>%
  drop_na(lyr.3) %>%
  plot(nc = 3)

# Auto-mask all layers
r %>%
  drop_na() %>%
  plot(nc = 3)

Fill in missing values with previous or next value on a SpatVector

Description

Fills missing values in selected columns using the next or previous entry. This is useful in the common output format where values are not repeated, and are only recorded when they change.

Usage

## S3 method for class 'SpatVector'
fill(data, ..., .direction = c("down", "up", "downup", "updown"))

Arguments

data

A SpatVector.

...

<tidy-select> Columns to fill.

.direction

Direction in which to fill missing values. Currently either "down" (the default), "up", "downup" (i.e. first down and then up) or "updown" (first up and then down).

Value

A SpatVector object.

Methods

Implementation of the generic tidyr::fill() function for SpatVector.

Grouped SpatVector

With grouped SpatVector created by group_by.SpatVector(), fill() will be applied within each group, meaning that it won't fill across group boundaries.

See Also

tidyr::fill()

Other tidyr verbs for handling missing values: drop_na.Spat, replace_na.Spat

Other tidyr methods: drop_na.Spat, pivot_longer.SpatVector(), pivot_wider.SpatVector(), replace_na.Spat

Examples

library(dplyr)

lux <- terra::vect(system.file("ex/lux.shp", package = "terra"))

# Leave some blanks for demo purporses

lux_blnk <- lux %>%
  mutate(NAME_1 = if_else(NAME_1 != NAME_2, NA, NAME_2))


as_tibble(lux_blnk)

# `fill()` defaults to replacing missing data from top to bottom
lux_blnk %>%
  fill(NAME_1) %>%
  as_tibble()


# direction = "up"
lux_blnk %>%
  fill(NAME_1, .direction = "up") %>%
  as_tibble()

# Grouping and downup - will restore the initial state
lux_blnk %>%
  group_by(ID_1) %>%
  fill(NAME_1, .direction = "downup") %>%
  as_tibble()

Filtering joins for SpatVector objects

Description

Filtering joins filter rows from x based on the presence or absence of matches in y:

  • semi_join() return all rows from x with a match in y.

  • anti_join() return all rows from x without a match in y.

See dplyr::semi_join() for details.

Usage

## S3 method for class 'SpatVector'
semi_join(x, y, by = NULL, copy = FALSE, ...)

## S3 method for class 'SpatVector'
anti_join(x, y, by = NULL, copy = FALSE, ...)

Arguments

x

A SpatVector created with terra::vect().

y

A data frame or other object coercible to a data frame. If a SpatVector of sf object is provided it would return an error (see terra::intersect() for performing spatial joins).

by

A join specification created with join_by(), or a character vector of variables to join by.

If NULL, the default, ⁠*_join()⁠ will perform a natural join, using all variables in common across x and y. A message lists the variables so that you can check they're correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification. For example, join_by(a == b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple expressions. For example, join_by(a == b, c == d) will match x$a to y$b and x$c to y$d. If the column names are the same between x and y, you can shorten this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins. See the documentation at ?join_by for details on these types of joins.

For simple equality joins, you can alternatively specify a character vector of variable names to join by. For example, by = c("a", "b") joins x$a to y$a and x$b to y$b. If variable names differ between x and y, use a named character vector like by = c("x_a" = "y_a", "x_b" = "y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().

copy

If x and y are not from the same data source, and copy is TRUE, then y will be copied into the same src as x. This allows you to join tables across srcs, but it is a potentially expensive operation so you must opt into it.

...

Other parameters passed onto methods.

Value

A SpatVector object.

terra equivalent

terra::merge()

Methods

Implementation of the generic dplyr::semi_join() family

SpatVector

The geometry column has a sticky behavior. This means that the result would have always the geometry of x for the records that matches the join conditions.

See Also

dplyr::semi_join(), dplyr::anti_join(), terra::merge()

Other dplyr verbs that operate on pairs Spat*/data.frame: bind_cols.SpatVector, bind_rows.SpatVector, mutate-joins.SpatVector

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
library(ggplot2)

# Vector
v <- terra::vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

# A data frame
df <- data.frame(
  cpro = sprintf("%02d", 1:10),
  x = runif(10),
  y = runif(10),
  letter = rep_len(LETTERS[1:3], length.out = 10)
)

v

# Semi join
semi <- v %>% semi_join(df)

semi

autoplot(semi, aes(fill = iso2)) + ggtitle("Semi Join")


# Anti join

anti <- v %>% anti_join(df)

anti

autoplot(anti, aes(fill = iso2)) + ggtitle("Anti Join")

Subset cells/geometries of ⁠Spat*⁠ objects

Description

The filter() function is used to subset ⁠Spat*⁠ objects, retaining all cells/geometries that satisfy your conditions. To be retained, the cell/geometry must produce a value of TRUE for all conditions.

It is possible to filter a SpatRaster by its geographic coordinates. You need to use filter(.data, x > 42). Note that x and y are reserved names on terra, since they refer to the geographic coordinates of the layer.

See Examples and section About layer names on as_tibble.Spat().

Usage

## S3 method for class 'SpatRaster'
filter(.data, ..., .preserve = FALSE, .keep_extent = TRUE)

## S3 method for class 'SpatVector'
filter(.data, ..., .preserve = FALSE)

Arguments

.data

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

...

<data-masking> Expressions that return a logical value, and are defined in terms of the layers/attributes in .data. If multiple expressions are included, they are combined with the & operator. Only cells/geometries for which all conditions evaluate to TRUE are kept. See Methods.

.preserve

Ignored for ⁠Spat*⁠ objects.

.keep_extent

Should the extent of the resulting SpatRaster be kept? On FALSE, terra::trim() is called so the extent of the result may be different of the extent of the output. See also drop_na.SpatRaster().

Value

A ⁠Spat*⁠ object of the same class than .data. See Methods.

Methods

Implementation of the generic dplyr::filter() function.

SpatRaster

Cells that do not fulfill the conditions on ... are returned with value NA. On a multi-layer SpatRaster the NA is propagated across all the layers.

If .keep_extent = TRUE the returning SpatRaster has the same crs, extent, resolution and hence the same number of cells than .data. If .keep_extent = FALSE the outer NA cells are trimmed with terra::trim(), so the extent and number of cells may differ. The output would present in any case the same crs and resolution than .data.

x and y variables (i.e. the longitude and latitude of the SpatRaster) are also available internally for filtering. See Examples.

SpatVector

The result is a SpatVector with all the geometries that produce a value of TRUE for all conditions.

See Also

dplyr::filter()

Other single table verbs: arrange.SpatVector(), mutate.Spat, rename.Spat, select.Spat, slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on rows: arrange.SpatVector(), distinct.SpatVector(), slice.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

r <- rast(f) %>% select(tavg_04)

plot(r)


# Filter temps
r_f <- r %>% filter(tavg_04 > 11.5)

# Extent is kept
plot(r_f)


# Filter temps and extent
r_f2 <- r %>% filter(tavg_04 > 11.5, .keep_extent = FALSE)

# Extent has changed
plot(r_f2)


# Filter by geographic coordinates
r2 <- project(r, "epsg:4326")

r2 %>% plot()

r2 %>%
  filter(
    x > -4,
    x < -2,
    y > 42
  ) %>%
  plot()

Fortify ⁠Spat*⁠ Objects

Description

Fortify SpatRaster and SpatVector objects to data frames. This provide native compatibility with ggplot2::ggplot().

Usage

## S3 method for class 'SpatRaster'
fortify(
  model,
  data,
  ...,
  .name_repair = "unique",
  maxcell = terra::ncell(model) * 1.1,
  pivot = FALSE
)

## S3 method for class 'SpatVector'
fortify(model, data, ...)

## S3 method for class 'SpatGraticule'
fortify(model, data, ...)

Arguments

model

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

data

Not used by this method.

...

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can not be passed through .... Unknown arguments that are not part of the 4 categories below are ignored.

  • Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.

  • When constructing a layer using a ⁠stat_*()⁠ function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.

  • Inversely, when constructing a layer using a ⁠geom_*()⁠ function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.

  • The key_glyph argument of layer() may also be passed on through .... This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

.name_repair

Treatment of problematic column names:

  • "minimal": No name repair or checks, beyond basic existence.

  • "unique": Make sure names are unique and not empty.

  • "check_unique": (default value), no name repair, but check they are unique.

  • "universal": Make the names unique and syntactic.

  • a function: apply custom name repair (e.g., .name_repair = make.names for names in the style of base R).

  • A purrr-style anonymous function, see rlang::as_function().

maxcell

positive integer. Maximum number of cells to use for the plot.

pivot

Logical. When TRUE the SpatRaster would be fortified on long format. When FALSE (the default) it would be fortified as a data frame with a column for each layer. See Details.

Value

fortify.SpatVector() returns a sf object and fortify.SpatRaster() returns a tibble. See Methods.

Methods

Implementation of the generic ggplot2::fortify() method.

SpatRaster

Return a tibble than can be used with ⁠ggplot2::geom_*⁠ like ggplot2::geom_point(), ggplot2::geom_raster(), etc.

The resulting tibble includes the coordinates on the columns ⁠x, y⁠. The values of each layer are included as additional columns named as per the name of the layer on the SpatRaster.

The CRS of the SpatRaster can be retrieved with attr(fortifiedSpatRaster, "crs").

It is possible to convert the fortified object onto a SpatRaster again with as_spatraster().

When pivot = TRUE the SpatRaster is fortified in a "long" format (see tidyr::pivot_longer()). The fortified object would have the following columns:

  • ⁠x,y⁠: Coordinates (center) of the cell on the corresponding CRS.

  • lyr: Indicating the name of the SpatRaster layer of value.

  • value: The value of the SpatRaster in the corresponding lyr.

This option may be useful when using several ⁠geom_*⁠ and for faceting, see Examples.

SpatVector

Return a sf object than can be used with ggplot2::geom_sf().

See Also

sf::st_as_sf(), as_tibble.Spat, as_spatraster(), ggplot2::fortify().

Other ggplot2 utils: autoplot.Spat, geom_spat_contour, geom_spatraster(), geom_spatraster_rgb(), ggspatvector, stat_spat_coordinates()

Other ggplot2 methods: autoplot.Spat

Coercing objects: as_coordinates(), as_sf(), as_spatraster(), as_spatvector(), as_tibble.Spat

Examples

# Get a SpatRaster
r <- system.file("extdata/volcano2.tif", package = "tidyterra") %>%
  terra::rast() %>%
  terra::project("EPSG:4326")

fortified <- ggplot2::fortify(r)

fortified

# The crs is an attribute of the fortified SpatRaster

attr(fortified, "crs")

# Back to a SpatRaster with
as_spatraster(fortified)

# You can now use a SpatRaster with any geom
library(ggplot2)

ggplot(r) +
  geom_histogram(aes(x = elevation),
    bins = 20, fill = "lightblue",
    color = "black"
  )

# ... and other packages
# Use metR with facets
library(metR)
temp <- terra::rast(system.file("extdata/cyl_temp.tif",
  package = "tidyterra"
))
brks <- seq(0, 21, 3) # Fix breaks!

# Pivot option for faceting
ggplot(temp, aes(x, y), pivot = TRUE) +
  # tidyterra, don't inherit aes
  geom_spatraster_contour_filled(
    data = temp, inherit.aes = FALSE,
    breaks = brks
  ) +
  # metR
  geom_contour_tanaka(aes(z = value), breaks = brks) +
  facet_wrap(~lyr, nrow = 1) +
  scale_fill_whitebox_d(palette = "muted") +
  theme_minimal() +
  labs(
    title = "tidyterra + metR", subtitle = "Facets",
    fill = "temp (°C)", x = "", y = ""
  )

# Create a SpatVector
extfile <- system.file("extdata/cyl.gpkg", package = "tidyterra")
cyl <- terra::vect(extfile)

cyl

# To sf
ggplot2::fortify(cyl)

# Now you can use geom_sf() straight away thanks to fortify::SpatVector()

library(ggplot2)

ggplot(cyl) +
  geom_sf()

Plot SpatRaster contours

Description

These geoms create contours of SpatRaster objects. To specify a valid surface, you should specify the layer on aes(z = layer_name), otherwise all the layers would be consider for creating contours. See also Facets section.

The underlying implementation is based on ggplot2::geom_contour().

[Experimental] geom_spatraster_contour_text() creates labeled contours and it is implemented on top of isoband::isolines_grob().

Usage

geom_spatraster_contour(
  mapping = NULL,
  data,
  ...,
  maxcell = 5e+05,
  bins = NULL,
  binwidth = NULL,
  breaks = NULL,
  na.rm = TRUE,
  show.legend = NA,
  inherit.aes = TRUE
)

geom_spatraster_contour_text(
  mapping = NULL,
  data,
  ...,
  maxcell = 5e+05,
  bins = NULL,
  binwidth = NULL,
  breaks = NULL,
  size.unit = "mm",
  label_format = scales::label_number(),
  label_placer = isoband::label_placer_minmax(),
  na.rm = TRUE,
  show.legend = NA,
  inherit.aes = TRUE
)

geom_spatraster_contour_filled(
  mapping = NULL,
  data,
  ...,
  maxcell = 5e+05,
  bins = NULL,
  binwidth = NULL,
  breaks = NULL,
  na.rm = TRUE,
  show.legend = NA,
  inherit.aes = TRUE
)

Arguments

mapping

Set of aesthetic mappings created by ggplot2::aes(). See Aesthetics specially in the use of fill aesthetic.

data

A SpatRaster object.

...

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can not be passed through .... Unknown arguments that are not part of the 4 categories below are ignored.

  • Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.

  • When constructing a layer using a ⁠stat_*()⁠ function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.

  • Inversely, when constructing a layer using a ⁠geom_*()⁠ function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.

  • The key_glyph argument of layer() may also be passed on through .... This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

maxcell

positive integer. Maximum number of cells to use for the plot.

bins

Number of contour bins. Overridden by breaks.

binwidth

The width of the contour bins. Overridden by bins.

breaks

One of:

  • Numeric vector to set the contour breaks

  • A function that takes the range of the data and binwidth as input and returns breaks as output. A function can be created from a formula (e.g. ~ fullseq(.x, .y)).

Overrides binwidth and bins. By default, this is a vector of length ten with pretty() breaks.

na.rm

If TRUE, the default, missing values are silently removed. If FALSE, missing values are removed with a warning.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them.

size.unit

How the size aesthetic is interpreted: as millimetres ("mm", default), points ("pt"), centimetres ("cm"), inches ("in"), or picas ("pc").

label_format

One of:

  • NULL for no labels. This produced the same result than geom_spatraster_contour().

  • A character vector giving labels (must be same length as the breaks produced by bins, binwidth, or breaks).

  • A function that takes the breaks as input and returns labels as output, as the default setup (scales::label_number()).

label_placer

Function that controls how labels are placed along the isolines. Uses label_placer_minmax() by default.

Value

A ggplot2 layer

terra equivalent

terra::contour()

Aesthetics

geom_spatraster_contour() / geom_spatraster_contour_text() understands the following aesthetics:

Additionally, geom_spatraster_contour_filled() understands also the following aesthetics, as well as the ones listed above:

Check ggplot2::geom_contour() for more info on contours and vignette("ggplot2-specs", package = "ggplot2") for an overview of the aesthetics.

Computed variables

These geom computes internally some variables that are available for use as aesthetics, using (for example) ⁠aes(color = after_stat(<computed>))⁠ (see ggplot2::after_stat()).

  • after_stat(lyr): Name of the layer.

  • after_stat(level): Height of contour. For contour lines, this is numeric vector that represents bin boundaries. For contour bands, this is an ordered factor that represents bin ranges.

  • after_stat(nlevel): Height of contour, scaled to maximum of 1.

  • after_stat(level_low), after_stat(level_high), after_stat(level_mid): (contour bands only) Lower and upper bin boundaries for each band, as well the mid point between the boundaries.

Dropped variables

  • z: After contouring, the z values of individual data points are no longer available.

Coords

When the SpatRaster does not present a crs (i.e., terra::crs(rast) == "") the geom does not make any assumption on the scales.

On SpatRaster that have a crs, the geom uses ggplot2::coord_sf() to adjust the scales. That means that also the SpatRaster may be reprojected.

Facets

You can use facet_wrap(~lyr) for creating a faceted plot by each layer of the SpatRaster object. See ggplot2::facet_wrap() for details.

See Also

ggplot2::geom_contour().

The metR package also provides a set of alternative functions:

Other ggplot2 utils: autoplot.Spat, fortify.Spat, geom_spatraster(), geom_spatraster_rgb(), ggspatvector, stat_spat_coordinates()

Examples

library(terra)

# Raster
f <- system.file("extdata/volcano2.tif", package = "tidyterra")
r <- rast(f)

library(ggplot2)

ggplot() +
  geom_spatraster_contour(data = r)


# Labelled
ggplot() +
  geom_spatraster_contour_text(
    data = r, breaks = c(110, 130, 160, 190),
    color = "grey10", family = "serif"
  )


ggplot() +
  geom_spatraster_contour(
    data = r, aes(color = after_stat(level)),
    binwidth = 1,
    linewidth = 0.4
  ) +
  scale_color_gradientn(
    colours = hcl.colors(20, "Inferno"),
    guide = guide_coloursteps()
  ) +
  theme_minimal()

# Filled with breaks
ggplot() +
  geom_spatraster_contour_filled(data = r, breaks = seq(80, 200, 10)) +
  scale_fill_hypso_d()

# Both lines and contours
ggplot() +
  geom_spatraster_contour_filled(
    data = r, breaks = seq(80, 200, 10),
    alpha = .7
  ) +
  geom_spatraster_contour(
    data = r, breaks = seq(80, 200, 2.5),
    color = "grey30",
    linewidth = 0.1
  ) +
  scale_fill_hypso_d()

Visualise SpatRaster objects

Description

This geom is used to visualise SpatRaster objects (see terra::rast()). The geom is designed for visualise the object by layers, as terra::plot() does.

For plotting SpatRaster objects as map tiles (i.e. RGB SpatRaster), use geom_spatraster_rgb().

The underlying implementation is based on ggplot2::geom_raster().

stat_spatraster() is provided as a complementary function, so the geom can be modified.

Usage

geom_spatraster(
  mapping = aes(),
  data,
  na.rm = TRUE,
  show.legend = NA,
  inherit.aes = FALSE,
  interpolate = FALSE,
  maxcell = 5e+05,
  use_coltab = TRUE,
  ...
)

stat_spatraster(
  mapping = aes(),
  data,
  geom = "raster",
  na.rm = TRUE,
  show.legend = NA,
  inherit.aes = FALSE,
  maxcell = 5e+05,
  ...
)

Arguments

mapping

Set of aesthetic mappings created by ggplot2::aes(). See Aesthetics specially in the use of fill aesthetic.

data

A SpatRaster object.

na.rm

If TRUE, the default, missing values are silently removed. If FALSE, missing values are removed with a warning.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them.

interpolate

If TRUE interpolate linearly, if FALSE (the default) don't interpolate.

maxcell

positive integer. Maximum number of cells to use for the plot.

use_coltab

Logical. Only applicable to SpatRaster objects that have an associated coltab. Should the coltab be used on the plot? See also scale_fill_coltab().

...

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can not be passed through .... Unknown arguments that are not part of the 4 categories below are ignored.

  • Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.

  • When constructing a layer using a ⁠stat_*()⁠ function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.

  • Inversely, when constructing a layer using a ⁠geom_*()⁠ function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.

  • The key_glyph argument of layer() may also be passed on through .... This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

geom

The geometric object to use display the data. Recommended geom for SpatRaster are "raster" (the default), "point","text" and "label".

Value

A ggplot2 layer

terra equivalent

terra::plot()

Coords

When the SpatRaster does not present a crs (i.e., terra::crs(rast) == "") the geom does not make any assumption on the scales.

On SpatRaster that have a crs, the geom uses ggplot2::coord_sf() to adjust the scales. That means that also the SpatRaster may be reprojected.

Aesthetics

geom_spatraster() understands the following aesthetics:

If fill is not provided, geom_spatraster() creates a ggplot2 layer with all the layers of the SpatRaster object. Use facet_wrap(~lyr) to display properly the SpatRaster layers.

If fill is used, it should contain the name of one layer that is present on the SpatRaster (i.e. ⁠geom_spatraster(data = rast, aes(fill = <name_of_lyr>)⁠). Names of the layers can be retrieved using names(rast).

Using geom_spatraster(..., mapping = aes(fill = NULL)) or ⁠geom_spatraster(..., fill = <color value(s)>)⁠ would create a layer with no mapped fill aesthetic.

fill can use computed variables.

For alpha use computed variable. See section Computed variables.

stat_spatraster()

stat_spatraster() understands the same aesthetics than geom_spatraster() when using geom = "raster" (the default):

When geom = "raster" the fill parameter would behave as in geom_spatraster(). If another geom is used stat_spatraster() would understand the aesthetics of the required geom and ⁠aes(fill = <name_of_lyr>)⁠ would not be applicable.

Note also that mapping of aesthetics x and y is provided by default, so the user does not need to add those aesthetics on aes(). In all the cases the aesthetics should be mapped by using computed variables. See section Computed variables and Examples.

Facets

You can use facet_wrap(~lyr) for creating a faceted plot by each layer of the SpatRaster object. See ggplot2::facet_wrap() for details.

Computed variables

This geom computes internally some variables that are available for use as aesthetics, using (for example) aes(alpha = after_stat(value)) (see ggplot2::after_stat()).

  • after_stat(value): Values of the SpatRaster.

  • after_stat(lyr): Name of the layer.

Source

Based on the layer_spatial() implementation on ggspatial package. Thanks to Dewey Dunnington and ggspatial contributors.

See Also

ggplot2::geom_raster(), ggplot2::coord_sf(), ggplot2::facet_wrap()

Recommended geoms:

Other ggplot2 utils: autoplot.Spat, fortify.Spat, geom_spat_contour, geom_spatraster_rgb(), ggspatvector, stat_spat_coordinates()

Examples

# Avg temperature on spring in Castille and Leon (Spain)
file_path <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

library(terra)
temp_rast <- rast(file_path)

library(ggplot2)

# Display a single layer
names(temp_rast)

ggplot() +
  geom_spatraster(data = temp_rast, aes(fill = tavg_04)) +
  # You can use coord_sf
  coord_sf(crs = 3857) +
  scale_fill_grass_c(palette = "celsius")

# Display facets
ggplot() +
  geom_spatraster(data = temp_rast) +
  facet_wrap(~lyr, ncol = 2) +
  scale_fill_grass_b(palette = "celsius", breaks = seq(0, 20, 2.5))

# Non spatial rasters

no_crs <- rast(crs = NA, extent = c(0, 100, 0, 100), nlyr = 1)
values(no_crs) <- seq_len(ncell(no_crs))


ggplot() +
  geom_spatraster(data = no_crs)

# Downsample

ggplot() +
  geom_spatraster(data = no_crs, maxcell = 25)



# Using stat_spatraster
# Default
ggplot() +
  stat_spatraster(data = temp_rast) +
  facet_wrap(~lyr)

# Using points
ggplot() +
  stat_spatraster(
    data = temp_rast,
    aes(color = after_stat(value)),
    geom = "point", maxcell = 250
  ) +
  scale_colour_viridis_c(na.value = "transparent") +
  facet_wrap(~lyr)

# Using points and labels

r_single <- temp_rast %>% select(1)

ggplot() +
  stat_spatraster(
    data = r_single,
    aes(color = after_stat(value)),
    geom = "point",
    maxcell = 2000
  ) +
  stat_spatraster(
    data = r_single,
    aes(label = after_stat(round(value, 2))),
    geom = "label",
    alpha = 0.85,
    maxcell = 20
  ) +
  scale_colour_viridis_c(na.value = "transparent")

Visualise SpatRaster objects as images

Description

This geom is used to visualise SpatRaster objects (see terra::rast()) as RGB images. The layers are combined such that they represent the red, green and blue channel.

For plotting SpatRaster objects by layer values use geom_spatraster().

The underlying implementation is based on ggplot2::geom_raster().

Usage

geom_spatraster_rgb(
  mapping = aes(),
  data,
  interpolate = TRUE,
  r = 1,
  g = 2,
  b = 3,
  alpha = 1,
  maxcell = 5e+05,
  max_col_value = 255,
  ...
)

Arguments

mapping

Ignored.

data

A SpatRaster object.

interpolate

If TRUE interpolate linearly, if FALSE (the default) don't interpolate.

r, g, b

Integer representing the number of layer of data to be considered as the red (r), green (g) and blue (b) channel.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

maxcell

positive integer. Maximum number of cells to use for the plot.

max_col_value

Number giving the maximum of the color values range. When this is 255 (the default), the result is computed most efficiently. See grDevices::rgb().

...

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can not be passed through .... Unknown arguments that are not part of the 4 categories below are ignored.

  • Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.

  • When constructing a layer using a ⁠stat_*()⁠ function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.

  • Inversely, when constructing a layer using a ⁠geom_*()⁠ function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.

  • The key_glyph argument of layer() may also be passed on through .... This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

Value

A ggplot2 layer

terra equivalent

terra::plotRGB()

Aesthetics

No aes() is required. In fact, aes() will be ignored.

Coords

When the SpatRaster does not present a crs (i.e., terra::crs(rast) == "") the geom does not make any assumption on the scales.

On SpatRaster that have a crs, the geom uses ggplot2::coord_sf() to adjust the scales. That means that also the SpatRaster may be reprojected.

Source

Based on the layer_spatial() implementation on ggspatial package. Thanks to Dewey Dunnington and ggspatial contributors.

See Also

ggplot2::geom_raster(), ggplot2::coord_sf(), grDevices::rgb().

You can get also RGB tiles from the maptiles package, see maptiles::get_tiles().

Other ggplot2 utils: autoplot.Spat, fortify.Spat, geom_spat_contour, geom_spatraster(), ggspatvector, stat_spat_coordinates()

Examples

# Tile of Castille and Leon (Spain) from OpenStreetMap
file_path <- system.file("extdata/cyl_tile.tif", package = "tidyterra")

library(terra)
tile <- rast(file_path)

library(ggplot2)


ggplot() +
  geom_spatraster_rgb(data = tile) +
  # You can use coord_sf
  coord_sf(crs = 3035)

# Combine with sf objects
vect_path <- system.file("extdata/cyl.gpkg", package = "tidyterra")

cyl_sf <- sf::st_read(vect_path)

ggplot(cyl_sf) +
  geom_spatraster_rgb(data = tile) +
  geom_sf(aes(fill = iso2)) +
  coord_sf(crs = 3857) +
  scale_fill_viridis_d(alpha = 0.7)

Visualise SpatVector objects

Description

Wrappers of ggplot2::geom_sf() family used to visualise SpatVector objects (see terra::vect()).

Usage

geom_spatvector(
  mapping = aes(),
  data = NULL,
  na.rm = FALSE,
  show.legend = NA,
  ...
)

geom_spatvector_label(
  mapping = aes(),
  data = NULL,
  na.rm = FALSE,
  show.legend = NA,
  ...,
  nudge_x = 0,
  nudge_y = 0,
  label.size = 0.25,
  inherit.aes = TRUE
)

geom_spatvector_text(
  mapping = aes(),
  data = NULL,
  na.rm = FALSE,
  show.legend = NA,
  ...,
  nudge_x = 0,
  nudge_y = 0,
  check_overlap = FALSE,
  inherit.aes = TRUE
)

stat_spatvector(
  mapping = NULL,
  data = NULL,
  geom = "rect",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

A SpatVector object, see terra::vect().

na.rm

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

You can also set this to one of "polygon", "line", and "point" to override the default legend.

...

Other arguments passed on to ggplot2::geom_sf() functions. These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or linewidth = 3.

nudge_x, nudge_y

Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with position.

label.size

Size of label border, in mm.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

check_overlap

If TRUE, text that overlaps previous text in the same layer will not be plotted. check_overlap happens at draw time and in the order of the data. Therefore data should be arranged by the label column before calling geom_text(). Note that this argument is not supported by geom_label().

geom

The geometric object to use to display the data for this layer. When using a ⁠stat_*()⁠ function to construct a layer, the geom argument can be used to override the default coupling between stats and geoms. The geom argument accepts the following:

  • A Geom ggproto subclass, for example GeomPoint.

  • A string naming the geom. To give the geom as a string, strip the function name of the geom_ prefix. For example, to use geom_point(), give the geom as "point".

  • For more information and other ways to specify the geom, see the layer geom documentation.

position

A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

  • The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.

  • A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".

  • For more information and other ways to specify the position, see the layer position documentation.

Details

These functions are wrappers of ggplot2::geom_sf() functions. Since a fortify.SpatVector() method is provided, ggplot2 treat a SpatVector in the same way that a sf object. A side effect is that you can use ggplot2::geom_sf() directly with SpatVector objects.

See ggplot2::geom_sf() for details on aesthetics, etc.

Value

A ggplot2 layer

terra equivalent

terra::plot()

See Also

ggplot2::geom_sf()

Other ggplot2 utils: autoplot.Spat, fortify.Spat, geom_spat_contour, geom_spatraster(), geom_spatraster_rgb(), stat_spat_coordinates()

Examples

# Create a SpatVector
extfile <- system.file("extdata/cyl.gpkg", package = "tidyterra")

cyl <- terra::vect(extfile)
class(cyl)

library(ggplot2)

ggplot(cyl) +
  geom_spatvector()


# With params

ggplot(cyl) +
  geom_spatvector(aes(fill = name), color = NA) +
  scale_fill_viridis_d() +
  coord_sf(crs = 3857)

# Add labels
ggplot(cyl) +
  geom_spatvector(aes(fill = name), color = NA) +
  geom_spatvector_text(aes(label = iso2),
    fontface = "bold",
    color = "red"
  ) +
  scale_fill_viridis_d(alpha = 0.4) +
  coord_sf(crs = 3857)

# You can use now geom_sf with SpatVectors!



ggplot(cyl) +
  geom_sf() +
  labs(
    title = paste("cyl is", as.character(class(cyl))),
    subtitle = "With geom_sf()"
  )

Get a nice glimpse of your ⁠Spat*⁠ objects

Description

glimpse() is like a transposed version of print(): layers/columns run down the page, and data runs across. This makes it possible to see every layer/column in a ⁠Spat*⁠ object.

Usage

## S3 method for class 'SpatRaster'
glimpse(x, width = NULL, ..., n = 10, max_extra_cols = 20)

## S3 method for class 'SpatVector'
glimpse(x, width = NULL, ..., n = 10, max_extra_cols = 20)

Arguments

x

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

width

Width of output: defaults to the setting of the width option (if finite) or the width of the console. See dplyr::glimpse().

...

Arguments passed on to as_tibble() methods for SpatRaster and SpatVector. See as_tibble.SpatRaster().

n

Maximum number of rows to show.

max_extra_cols

Number of extra columns or layers to print abbreviated information for, if n is too small for the ⁠Spat*⁠ object.

Value

original x is (invisibly) returned, allowing glimpse() to be used within a data pipeline.

terra equivalent

print()

Methods

Implementation of the generic dplyr::glimpse() function for ⁠Spat*⁠. objects.

See Also

tibble::print.tbl_df()

Other dplyr verbs that operate on columns: mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)

# SpatVector
v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

v %>% glimpse(n = 2)

# Use on a pipeline
v %>%
  glimpse() %>%
  mutate(a = 30) %>%
  # with options
  glimpse(geom = "WKT")

# SpatRaster
r <- rast(system.file("extdata/cyl_elev.tif", package = "tidyterra"))

r %>% glimpse()

# Use on a pipeline
r %>%
  glimpse() %>%
  mutate(b = elevation_m / 100) %>%
  # With options
  glimpse(xy = TRUE)

GRASS color tables

Description

A tibble including the color map of 51 gradient palettes. Some palettes includes also a definition of colors limits that can be used with ggplot2::scale_fill_gradientn().

Format

A tibble of 2920 rows and 6 columns. with the following fields:

pal

Name of the palette.

limit

(Optional) limit for each color.

r

Value of the red channel (RGB color mode).

g

Value of the green channel (RGB color mode).

b

Value of the blue channel (RGB color mode).

hex

Hex code of the color.

Details

Summary of palettes provided, description and recommended use:

palette use description range
aspect General aspect oriented grey colors
aspectcolr General aspect oriented rainbow colors 0 to 360
bcyr General blue through cyan through yellow to red
bgyr General blue through green through yellow to red
blues General white to blue
byg General blue through yellow to green
byr General blue through yellow to red
celsius General blue to red for degree Celsius temperature -80 to 80
corine Land Cover EU Corine land cover colors 111 to 995
curvature General for terrain curvatures -0.1 to 0.1
differences General differences oriented colors
elevation Topography maps relative ranges of raster values to elevation color ramp
etopo2 Topography colors for ETOPO2 worldwide bathymetry/topography -11000 to 8850
evi Natural enhanced vegetative index colors -1 to 1
fahrenheit Temperature blue to red for Fahrenheit temperature -112 to 176
forest_cover Natural percentage of forest cover 0 to 1
gdd Natural accumulated growing degree days 0 to 6000
grass General GRASS GIS green (perceptually uniform)
greens General white to green
grey General grey scale
gyr General green through yellow to red
haxby Topography relative colors for bathymetry or topography
inferno General perceptually uniform sequential color table inferno
kelvin Temperature blue to red for temperature in Kelvin scale 193.15 to 353.15
magma General perceptually uniform sequential color table magma
ndvi Natural Normalized Difference Vegetation Index colors -1 to 1
ndwi Natural Normalized Difference Water Index colors -200 to 200
nlcd Land Cover US National Land Cover Dataset colors 0 to 95
oranges General white to orange
plasma General perceptually uniform sequential color table plasma
population Human color table covering human population classification breaks 0 to 1000000
population_dens Human color table covering human population density classification breaks 0 to 1000
precipitation Climate precipitation color table (0..2000mm) 0 to 7000
precipitation_daily Climate precipitation color table (0..1000mm) 0 to 100
precipitation_monthly Climate precipitation color table (0..1000mm) 0 to 1000
rainbow General rainbow color table
ramp General color ramp
reds General white to red
roygbiv General
rstcurv General terrain curvature (from r.resamp.rst) -0.1 to 0.1
ryb General red through yellow to blue
ryg General red through yellow to green
sepia General yellowish-brown through to white
slope General r.slope.aspect-type slope colors for raster values 0-90 0 to 90
soilmoisture Natural soil moisture color table (0.0-1.0) 0 to 1
srtm Topography color palette for Shuttle Radar Topography Mission elevation -11000 to 8850
srtm_plus Topography color palette for Shuttle Radar Topography Mission elevation (with seafloor colors) -11000 to 8850
terrain Topography global elevation color table covering -11000 to +8850m -11000 to 8850
viridis General perceptually uniform sequential color table viridis
water Natural water depth
wave General color wave

terra equivalent

terra::map.pal()

Source

Derived from https://github.com/OSGeo/grass/tree/main/lib/gis/colors. See also r.color - GRASS GIS Manual.

References

GRASS Development Team (2024). Geographic Resources Analysis Support System (GRASS) Software, Version 8.3.2. Open Source Geospatial Foundation, USA. https://grass.osgeo.org.

See Also

scale_fill_grass_c()

Other datasets: cross_blended_hypsometric_tints_db, hypsometric_tints_db, princess_db, volcano2

Examples

data("grass_db")

grass_db
# Select a palette

srtm_plus <- grass_db %>%
  filter(pal == "srtm_plus")

f <- system.file("extdata/asia.tif", package = "tidyterra")
r <- terra::rast(f)

library(ggplot2)

p <- ggplot() +
  geom_spatraster(data = r) +
  labs(fill = "elevation")

p +
  scale_fill_gradientn(colors = srtm_plus$hex)

# Use with limits
p +
  scale_fill_gradientn(
    colors = srtm_plus$hex,
    values = scales::rescale(srtm_plus$limit),
    limit = range(srtm_plus$limit),
    na.value = "lightblue"
  )

Group a SpatVector by one or more variables

Description

Most data operations are done on groups defined by variables. group_by.SpatVector() adds new attributes to an existing SpatVector indicating the corresponding groups. See Methods.

Usage

## S3 method for class 'SpatVector'
group_by(.data, ..., .add = FALSE, .drop = group_by_drop_default(.data))

## S3 method for class 'SpatVector'
ungroup(x, ...)

Arguments

.data, x

A SpatVector object. See Methods.

...

In group_by(), variables or computations to group by. Computations are always done on the ungrouped data frame. To perform computations on the grouped data, you need to use a separate mutate() step before the group_by(). Computations are not allowed in nest_by(). In ungroup(), variables to remove from the grouping.

.add

When FALSE, the default, group_by() will override existing groups. To add to the existing groups, use .add = TRUE.

This argument was previously called add, but that prevented creating a new grouping variable called add, and conflicts with our naming conventions.

.drop

Drop groups formed by factor levels that don't appear in the data? The default is TRUE except when .data has been previously grouped with .drop = FALSE. See group_by_drop_default() for details.

Details

See Details on dplyr::group_by().

Value

A SpatVector object with an additional attribute.

Methods

Implementation of the generic dplyr::group_by() family functions for SpatVector objects.

When mixing terra and dplyr syntax on a grouped SpatVector (i.e, subsetting a SpatVector like v[1:3,1:2]) the groups attribute can be corrupted. tidyterra would try to re-group the SpatVector. This would be triggered the next time you use a dplyr verb on your SpatVector.

Note also that some operations (as terra::spatSample()) would create a new SpatVector. In these cases, the result won't preserve the groups attribute. Use group_by() to re-group.

See Also

dplyr::group_by(), dplyr::ungroup()

Other dplyr verbs that operate on group of rows: count.SpatVector(), rowwise.SpatVector(), summarise.SpatVector()

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("ex/lux.shp", package = "terra")
p <- vect(f)


by_name1 <- p %>% group_by(NAME_1)

# grouping doesn't change how the SpatVector looks
by_name1

# But add metadata for grouping: See the coercion to tibble

# Not grouped
p_tbl <- as_tibble(p)
class(p_tbl)
head(p_tbl, 3)

# Grouped
by_name1_tbl <- as_tibble(by_name1)
class(by_name1_tbl)
head(by_name1_tbl, 3)


# It changes how it acts with the other dplyr verbs:
by_name1 %>% summarise(
  pop = mean(POP),
  area = sum(AREA)
)

# Each call to summarise() removes a layer of grouping
by_name2_name1 <- p %>% group_by(NAME_2, NAME_1)

by_name2_name1
group_data(by_name2_name1)

by_name2 <- by_name2_name1 %>% summarise(n = dplyr::n())
by_name2
group_data(by_name2)

# To removing grouping, use ungroup
by_name2 %>%
  ungroup() %>%
  summarise(n = sum(n))

# By default, group_by() overrides existing grouping
by_name2_name1 %>%
  group_by(ID_1, ID_2) %>%
  group_vars()


# Use add = TRUE to instead append
by_name2_name1 %>%
  group_by(ID_1, ID_2, .add = TRUE) %>%
  group_vars()

# You can group by expressions: this is a short-hand
# for a mutate() followed by a group_by()
p %>%
  group_by(ID_COMB = ID_1 * 100 / ID_2) %>%
  relocate(ID_COMB, .before = 1)

Hypsometric palettes database

Description

A tibble including the color map of 33 gradient palettes. All the palettes includes also a definition of colors limits in terms of elevation (meters), that can be used with ggplot2::scale_fill_gradientn().

Format

A tibble of 1102 rows and 6 columns. with the following fields:

pal

Name of the palette.

limit

Recommended elevation limit (in meters) for each color.

r

Value of the red channel (RGB color mode).

g

Value of the green channel (RGB color mode).

b

Value of the blue channel (RGB color mode).

hex

Hex code of the color.

Source

cpt-city: http://seaviewsensing.com/pub/cpt-city/.

See Also

scale_fill_hypso_c()

Other datasets: cross_blended_hypsometric_tints_db, grass_db, princess_db, volcano2

Examples

data("hypsometric_tints_db")

hypsometric_tints_db

# Select a palette
wikicols <- hypsometric_tints_db %>%
  filter(pal == "wiki-2.0")

f <- system.file("extdata/asia.tif", package = "tidyterra")
r <- terra::rast(f)

library(ggplot2)

p <- ggplot() +
  geom_spatraster(data = r) +
  labs(fill = "elevation")

p +
  scale_fill_gradientn(colors = wikicols$hex)

# Use with limits
p +
  scale_fill_gradientn(
    colors = wikicols$hex,
    values = scales::rescale(wikicols$limit),
    limit = range(wikicols$limit)
  )

Check if x and y positions conforms a regular grid

Description

Assess if the coordinates x,y of an object conforms a regular grid. This function is called by its side effects.

This function is internally called by as_spatraster().

Usage

is_regular_grid(xy, digits = 6)

Arguments

xy

A matrix, data frame or tibble of at least two columns representing x and y coordinates.

digits

integer to set the precision for detecting whether points are on a regular grid (a low number of digits is a low precision).

Value

invisible() if is regular or an error message otherwise

See Also

as_spatraster()

Other helpers: compare_spatrasters(), is_grouped_spatvector(), pull_crs()

Examples

p <- matrix(1:90, nrow = 45, ncol = 2)

is_regular_grid(p)


# Jitter location
set.seed(1234)
jitter <- runif(length(p)) / 10e4
p_jitter <- p + jitter

# Need to adjust digits
is_regular_grid(p_jitter, digits = 4)

Mutating joins for SpatVector objects

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four mutating joins: the inner join, and the three outer joins.

See dplyr::inner_join() for details.

Usage

## S3 method for class 'SpatVector'
inner_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL
)

## S3 method for class 'SpatVector'
left_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL
)

## S3 method for class 'SpatVector'
right_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL
)

## S3 method for class 'SpatVector'
full_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL
)

Arguments

x

A SpatVector created with terra::vect().

y

A data frame or other object coercible to a data frame. If a SpatVector of sf object is provided it would return an error (see terra::intersect() for performing spatial joins).

by

A join specification created with join_by(), or a character vector of variables to join by.

If NULL, the default, ⁠*_join()⁠ will perform a natural join, using all variables in common across x and y. A message lists the variables so that you can check they're correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification. For example, join_by(a == b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple expressions. For example, join_by(a == b, c == d) will match x$a to y$b and x$c to y$d. If the column names are the same between x and y, you can shorten this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins. See the documentation at ?join_by for details on these types of joins.

For simple equality joins, you can alternatively specify a character vector of variable names to join by. For example, by = c("a", "b") joins x$a to y$a and x$b to y$b. If variable names differ between x and y, use a named character vector like by = c("x_a" = "y_a", "x_b" = "y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().

copy

If x and y are not from the same data source, and copy is TRUE, then y will be copied into the same src as x. This allows you to join tables across srcs, but it is a potentially expensive operation so you must opt into it.

suffix

If there are non-joined duplicate variables in x and y, these suffixes will be added to the output to disambiguate them. Should be a character vector of length 2.

...

Other parameters passed onto methods.

keep

Should the join keys from both x and y be preserved in the output?

  • If NULL, the default, joins on equality retain only the keys from x, while joins on inequality retain the keys from both inputs.

  • If TRUE, all keys from both inputs are retained.

  • If FALSE, only keys from x are retained. For right and full joins, the data in key columns corresponding to rows that only exist in y are merged into the key columns from x. Can't be used when joining on inequality conditions.

Value

A SpatVector object.

terra equivalent

terra::merge()

Methods

Implementation of the generic dplyr::inner_join() family

SpatVector

The geometry column has a sticky behavior. This means that the result would have always the geometry of x for the records that matches the join conditions.

Note that for right_join() and full_join() it is possible to return empty geometries (since y is expected to be a data frame with no geometries). Although this kind of joining operations may not be common on spatial manipulation, it is possible that the function crashes, since handling of EMPTY geometries differs on terra and sf.

See Also

dplyr::inner_join(), dplyr::left_join(), dplyr::right_join(), dplyr::full_join(), terra::merge()

Other dplyr verbs that operate on pairs Spat*/data.frame: bind_cols.SpatVector, bind_rows.SpatVector, filter-joins.SpatVector

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
library(ggplot2)
# Vector
v <- terra::vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

# A data frame
df <- data.frame(
  cpro = sprintf("%02d", 1:10),
  x = runif(10),
  y = runif(10),
  letter = rep_len(LETTERS[1:3], length.out = 10)
)

# Inner join
inner <- v %>% inner_join(df)

nrow(inner)
autoplot(inner, aes(fill = letter)) + ggtitle("Inner Join")


# Left join

left <- v %>% left_join(df)
nrow(left)

autoplot(left, aes(fill = letter)) + ggtitle("Left Join")


# Right join
right <- v %>% right_join(df)
nrow(right)

autoplot(right, aes(fill = letter)) + ggtitle("Right Join")

# There are empty geometries, check with data from df
ggplot(right, aes(x, y)) +
  geom_point(aes(color = letter))


# Full join
full <- v %>% full_join(df)
nrow(full)

autoplot(full, aes(fill = letter)) + ggtitle("Full Join")

# Check with data from df
ggplot(full, aes(x, y)) +
  geom_point(aes(color = letter))

Create, modify, and delete cell values/layers/attributes of ⁠Spat*⁠ objects

Description

mutate() adds new layers/attributes and preserves existing ones on a ⁠Spat*⁠ object. transmute() adds new layers/attributes and drops existing ones. New variables overwrite existing variables of the same name. Variables can be removed by setting their value to NULL.

Usage

## S3 method for class 'SpatRaster'
mutate(.data, ...)

## S3 method for class 'SpatVector'
mutate(.data, ...)

## S3 method for class 'SpatRaster'
transmute(.data, ...)

## S3 method for class 'SpatVector'
transmute(.data, ...)

Arguments

.data

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

...

<data-masking> Name-value pairs. The name gives the name of the layer/attribute in the output.

Value

A ⁠Spat*⁠ object of the same class than .data. See Methods.

terra equivalent

Some terra methods for modifying cell values: terra::ifel(), terra::classify(), terra::clamp(), terra::app(), terra::lapp(), terra::tapp()

Methods

Implementation of the generic dplyr::mutate(), dplyr::transmute() functions.

SpatRaster

Add new layers and preserves existing ones. The result is a SpatRaster with the same extent, resolution and crs than .data. Only the values (and possibly the number) of layers is modified.

transmute() would keep only the layers created with ....

SpatVector

The result is a SpatVector with the modified (and possibly renamed) attributes on the function call.

transmute() would keep only the attributes created with ....

See Also

dplyr::mutate(), dplyr::transmute() methods.

terra provides several ways to modify ⁠Spat*⁠ objects:

Other single table verbs: arrange.SpatVector(), filter.Spat, rename.Spat, select.Spat, slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on columns: glimpse.Spat, pull.Spat, relocate.Spat, rename.Spat, select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)

# SpatRaster method
f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
spatrast <- rast(f)

mod <- spatrast %>%
  mutate(exp_lyr1 = exp(tavg_04 / 10)) %>%
  select(tavg_04, exp_lyr1)

mod
plot(mod)

# SpatVector method
f <- system.file("extdata/cyl.gpkg", package = "tidyterra")
v <- vect(f)

v %>%
  mutate(cpro2 = paste0(cpro, "-CyL")) %>%
  select(cpro, cpro2)

Pivot SpatVector from wide to long

Description

pivot_longer() "lengthens" data, increasing the number of rows and decreasing the number of columns. The inverse transformation is pivot_wider.SpatVector()

Learn more in tidyr::pivot_wider().

Usage

## S3 method for class 'SpatVector'
pivot_longer(
  data,
  cols,
  ...,
  cols_vary = "fastest",
  names_to = "name",
  names_prefix = NULL,
  names_sep = NULL,
  names_pattern = NULL,
  names_ptypes = NULL,
  names_transform = NULL,
  names_repair = "check_unique",
  values_to = "value",
  values_drop_na = FALSE,
  values_ptypes = NULL,
  values_transform = NULL
)

Arguments

data

A SpatVector to pivot.

cols

<tidy-select> Columns to pivot into longer format.

...

Additional arguments passed on to methods.

cols_vary

When pivoting cols into longer format, how should the output rows be arranged relative to their original row number?

  • "fastest", the default, keeps individual rows from cols close together in the output. This often produces intuitively ordered output when you have at least one key column from data that is not involved in the pivoting process.

  • "slowest" keeps individual columns from cols close together in the output. This often produces intuitively ordered output when you utilize all of the columns from data in the pivoting process.

names_to

A character vector specifying the new column or columns to create from the information stored in the column names of data specified by cols.

  • If length 0, or if NULL is supplied, no columns will be created.

  • If length 1, a single column will be created which will contain the column names specified by cols.

  • If length >1, multiple columns will be created. In this case, one of names_sep or names_pattern must be supplied to specify how the column names should be split. There are also two additional character values you can take advantage of:

    • NA will discard the corresponding component of the column name.

    • ".value" indicates that the corresponding component of the column name defines the name of the output column containing the cell values, overriding values_to entirely.

names_prefix

A regular expression used to remove matching text from the start of each variable name.

names_sep, names_pattern

If names_to contains multiple values, these arguments control how the column name is broken up.

names_sep takes the same specification as separate(), and can either be a numeric vector (specifying positions to break on), or a single string (specifying a regular expression to split on).

names_pattern takes the same specification as extract(), a regular expression containing matching groups (⁠()⁠).

If these arguments do not give you enough control, use pivot_longer_spec() to create a spec object and process manually as needed.

names_ptypes, values_ptypes

Optionally, a list of column name-prototype pairs. Alternatively, a single empty prototype can be supplied, which will be applied to all columns. A prototype (or ptype for short) is a zero-length vector (like integer() or numeric()) that defines the type, class, and attributes of a vector. Use these arguments if you want to confirm that the created columns are the types that you expect. Note that if you want to change (instead of confirm) the types of specific columns, you should use names_transform or values_transform instead.

names_transform, values_transform

Optionally, a list of column name-function pairs. Alternatively, a single function can be supplied, which will be applied to all columns. Use these arguments if you need to change the types of specific columns. For example, names_transform = list(week = as.integer) would convert a character variable called week to an integer.

If not specified, the type of the columns generated from names_to will be character, and the type of the variables generated from values_to will be the common type of the input columns used to generate them.

names_repair

What happens if the output has invalid column names? The default, "check_unique" is to error if the columns are duplicated. Use "minimal" to allow duplicates in the output, or "unique" to de-duplicated by adding numeric suffixes. See vctrs::vec_as_names() for more options.

values_to

A string specifying the name of the column to create from the data stored in cell values. If names_to is a character containing the special .value sentinel, this value will be ignored, and the name of the value column will be derived from part of the existing column names.

values_drop_na

If TRUE, will drop rows that contain only NAs in the value_to column. This effectively converts explicit missing values to implicit missing values, and should generally be used only when missing values in data were created by its structure.

Value

A SpatVector object.

Methods

Implementation of the generic tidyr::pivot_longer() function.

SpatVector

The geometry column has a sticky behavior. This means that the result would have always the geometry of data.

See Also

tidyr::pivot_longer()

Other tidyr verbs for pivoting: pivot_wider.SpatVector()

Other tidyr methods: drop_na.Spat, fill.SpatVector(), pivot_wider.SpatVector(), replace_na.Spat

Examples

library(dplyr)
library(tidyr)
library(ggplot2)
library(terra)

temp <- rast((system.file("extdata/cyl_temp.tif", package = "tidyterra")))
cyl <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra")) %>%
  project(temp)

# Add average temp

temps <- terra::extract(temp, cyl, fun = "mean", na.rm = TRUE, xy = TRUE)
cyl_temp <- cbind(cyl, temps) %>%
  glimpse()

# And pivot long for plot
cyl_temp %>%
  pivot_longer(
    cols = tavg_04:tavg_06,
    names_to = "label",
    values_to = "temp"
  ) %>%
  ggplot() +
  geom_spatvector(aes(fill = temp)) +
  facet_wrap(~label, ncol = 1) +
  scale_fill_whitebox_c(palette = "muted")

Pivot SpatVector from long to wide

Description

pivot_wider() "widens" a SpatVector, increasing the number of columns and decreasing the number of rows. The inverse transformation is pivot_longer.SpatVector().

Usage

## S3 method for class 'SpatVector'
pivot_wider(
  data,
  ...,
  id_cols = NULL,
  id_expand = FALSE,
  names_from = "name",
  names_prefix = "",
  names_sep = "_",
  names_glue = NULL,
  names_sort = FALSE,
  names_vary = "fastest",
  names_expand = FALSE,
  names_repair = "check_unique",
  values_from = "value",
  values_fill = NULL,
  values_fn = NULL,
  unused_fn = NULL
)

Arguments

data

A SpatVector to pivot.

...

Additional arguments passed on to methods.

id_cols

<tidy-select> A set of columns that uniquely identify each observation. Typically used when you have redundant variables, i.e. variables whose values are perfectly correlated with existing variables.

Defaults to all columns in data except for the columns specified through names_from and values_from. If a tidyselect expression is supplied, it will be evaluated on data after removing the columns specified through names_from and values_from.

Note that "geometry" columns is sticky, hence it would be removed from names_from and values_from.

id_expand

Should the values in the id_cols columns be expanded by expand() before pivoting? This results in more rows, the output will contain a complete expansion of all possible values in id_cols. Implicit factor levels that aren't represented in the data will become explicit. Additionally, the row values corresponding to the expanded id_cols will be sorted.

names_from, values_from

<tidy-select> A pair of arguments describing which column (or columns) to get the name of the output column (names_from), and which column (or columns) to get the cell values from (values_from).

If values_from contains multiple values, the value will be added to the front of the output column.

names_prefix

A regular expression used to remove matching text from the start of each variable name.

names_sep

If names_from or values_from contains multiple variables, this will be used to join their values together into a single string to use as a column name.

names_glue

Instead of names_sep and names_prefix, you can supply a glue specification that uses the names_from columns (and special .value) to create custom column names.

names_sort

Should the column names be sorted? If FALSE, the default, column names are ordered by first appearance.

names_vary

When names_from identifies a column (or columns) with multiple unique values, and multiple values_from columns are provided, in what order should the resulting column names be combined?

  • "fastest" varies names_from values fastest, resulting in a column naming scheme of the form: ⁠value1_name1, value1_name2, value2_name1, value2_name2⁠. This is the default.

  • "slowest" varies names_from values slowest, resulting in a column naming scheme of the form: ⁠value1_name1, value2_name1, value1_name2, value2_name2⁠.

names_expand

Should the values in the names_from columns be expanded by expand() before pivoting? This results in more columns, the output will contain column names corresponding to a complete expansion of all possible values in names_from. Implicit factor levels that aren't represented in the data will become explicit. Additionally, the column names will be sorted, identical to what names_sort would produce.

names_repair

What happens if the output has invalid column names? The default, "check_unique" is to error if the columns are duplicated. Use "minimal" to allow duplicates in the output, or "unique" to de-duplicated by adding numeric suffixes. See vctrs::vec_as_names() for more options.

values_fill

Optionally, a (scalar) value that specifies what each value should be filled in with when missing.

This can be a named list if you want to apply different fill values to different value columns.

values_fn

Optionally, a function applied to the value in each cell in the output. You will typically use this when the combination of id_cols and names_from columns does not uniquely identify an observation.

This can be a named list if you want to apply different aggregations to different values_from columns.

unused_fn

Optionally, a function applied to summarize the values from the unused columns (i.e. columns not identified by id_cols, names_from, or values_from).

The default drops all unused columns from the result.

This can be a named list if you want to apply different aggregations to different unused columns.

id_cols must be supplied for unused_fn to be useful, since otherwise all unspecified columns will be considered id_cols.

This is similar to grouping by the id_cols then summarizing the unused columns using unused_fn.

Value

A SpatVector object.

Methods

Implementation of the generic tidyr::pivot_wider() function.

SpatVector

The geometry column has a sticky behavior. This means that the result would have always the geometry of data.

See Also

tidyr::pivot_wider()

Other tidyr verbs for pivoting: pivot_longer.SpatVector()

Other tidyr methods: drop_na.Spat, fill.SpatVector(), pivot_longer.SpatVector(), replace_na.Spat

Examples

library(dplyr)
library(tidyr)
library(ggplot2)

cyl <- terra::vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

# Add extra row with info
xtra <- cyl %>%
  slice(c(2, 3)) %>%
  mutate(
    label = "extra",
    value = TRUE
  ) %>%
  rbind(cyl, .) %>%
  glimpse()

# Pivot by geom
xtra %>%
  pivot_wider(
    id_cols = iso2:name, values_from = value,
    names_from = label
  )

Princess palettes database

Description

A tibble including the color map of 15 gradient palettes.

Format

A tibble of 75 rows and 5 columns. with the following fields:

pal

Name of the palette.

r

Value of the red channel (RGB color mode).

g

Value of the green channel (RGB color mode).

b

Value of the blue channel (RGB color mode).

hex

Hex code of the color.

Source

https://leahsmyth.github.io/Princess-Colour-Schemes/index.html.

See Also

scale_fill_princess_c()

Other datasets: cross_blended_hypsometric_tints_db, grass_db, hypsometric_tints_db, volcano2

Examples

data("princess_db")

princess_db

# Select a palette
maori <- princess_db %>%
  filter(pal == "maori")

f <- system.file("extdata/volcano2.tif", package = "tidyterra")
r <- terra::rast(f)

library(ggplot2)

p <- ggplot() +
  geom_spatraster(data = r) +
  labs(fill = "elevation")

p +
  scale_fill_gradientn(colors = maori$hex)

Extract CRS on WKT format

Description

Extract the WKT version of the CRS associated to a string, number of sf/Spat* object.

The Well-known text (WKT) representation of coordinate reference systems (CRS) is a character string that identifies precisely the parameters of each CRS. This is the current standard used on sf and terra packages.

Usage

pull_crs(.data, ...)

Arguments

.data

Input potentially including or representing a CRS. It could be a sf/sfc object, a SpatRaster/SpatVector object, a crs object from sf::st_crs(), a character (for example a proj4 string) or a integer (representing an EPSG code).

...

ignored

Details

Although the WKT representation is the same, sf and terra API slightly differs. For example, sf can do:

sf::st_transform(x, 25830)

While sf equivalent is:

terra::project(bb, "epsg:25830")

Knowing the WKT would help to smooth workflows when working with different packages and object types.

Value

A WKT representation of the corresponding CRS.

Internals

This is a thin wrapper of sf::st_crs() and terra::crs().

See Also

terra::crs(), sf::st_crs() for knowing how these packages handle CRS definitions.

Other helpers: compare_spatrasters(), is_grouped_spatvector(), is_regular_grid()

Examples

# sf objects

sfobj <- sf::st_as_sfc("MULTIPOINT ((0 0), (1 1))", crs = 4326)

fromsf1 <- pull_crs(sfobj)
fromsf2 <- pull_crs(sf::st_crs(sfobj))

# terra

v <- terra::vect(sfobj)
r <- terra::rast(v)

fromterra1 <- pull_crs(v)
fromterra2 <- pull_crs(r)

# integers
fromint <- pull_crs(4326)

# Characters
fromchar <- pull_crs("epsg:4326")


all(
  fromsf1 == fromsf2,
  fromsf2 == fromterra1,
  fromterra1 == fromterra2,
  fromterra2 == fromint,
  fromint == fromchar
)

cat(fromsf1)

Extract a single layer/attribute

Description

pull() is similar to $ on a data frame. It's mostly useful because it looks a little nicer in pipes and it can optionally name the output.

It is possible to extract the geographic coordinates of a SpatRaster. You need to use pull(.data, x, xy = TRUE). x and y are reserved names on terra, since they refer to the geographic coordinates of the layer.

See Examples and section About layer names on as_tibble.Spat().

Usage

## S3 method for class 'SpatRaster'
pull(.data, var = -1, name = NULL, ...)

## S3 method for class 'SpatVector'
pull(.data, var = -1, name = NULL, ...)

Arguments

.data

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

var

A variable specified as:

  • a literal layer/attribute name.

  • a positive integer, giving the position counting from the left.

  • a negative integer, giving the position counting from the right.

The default returns the last layer/attribute (on the assumption that's the column you've created most recently).

name

An optional parameter that specifies the column to be used as names for a named vector. Specified in a similar manner as var.

...

Arguments passed on to as_tibble.Spat()

Value

A vector the same number of cells/geometries as .data.

On SpatRaster objects, note that the default (na.rm = FALSE) would remove empty cells, so you may need to pass (na.rm = FALSE) to .... See terra::as.data.frame().

terra equivalent

terra::values()

Methods

Implementation of the generic dplyr::pull() function. This is done by coercing the ⁠Spat*⁠ object to a tibble first (see as_tibble.Spat) and then using dplyr::pull() method over the tibble.

SpatRaster

When passing option na.rm = TRUE to ..., only cells with a value distinct to NA are extracted. See terra::as.data.frame().

If xy = TRUE option is passed to ..., two columns names x and y (corresponding to the geographic coordinates of each cell) are available in position 1 and 2. Hence, pull(.data, 1) and pull(.data, 1, xy = TRUE) return different result.

SpatVector

When passing geom = "WKT"/geom = "HEX" to ..., the geometry of the SpatVector can be pulled passing var = geometry. Similarly to SpatRaster method, when using geom = "XY" the ⁠x,y⁠ coordinates can be pulled with var = x/var = y. See terra::as.data.frame() options.

See Also

dplyr::pull()

Other dplyr verbs that operate on columns: glimpse.Spat, mutate.Spat, relocate.Spat, rename.Spat, select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("extdata/cyl_tile.tif", package = "tidyterra")
r <- rast(f)

# Extract second layer
r %>%
  pull(2) %>%
  head()

# With xy the first two cols are `x` (longitude) and `y` (latitude)

r %>%
  pull(2, xy = TRUE) %>%
  head()

# With renaming

r %>%
  mutate(cat = cut(cyl_tile_3, c(0, 100, 300))) %>%
  pull(cyl_tile_3, name = cat) %>%
  head()

Change layer/attribute order

Description

Use relocate() to change layer/attribute positions, using the same syntax as select.Spat to make it easy to move blocks of layers/attributes at once.

Usage

## S3 method for class 'SpatRaster'
relocate(.data, ..., .before = NULL, .after = NULL)

## S3 method for class 'SpatVector'
relocate(.data, ..., .before = NULL, .after = NULL)

Arguments

.data

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

...

<tidy-select> layers/attributes to move.

.before, .after

<tidy-select> Destination of layers/attributes selected by .... Supplying neither will move layers/attributes to the left-hand side; specifying both is an error.

Value

A ⁠Spat*⁠ object of the same class than .data. See Methods.

terra equivalent

terra::subset(data, c("name_layer", "name_other_layer"))

Methods

Implementation of the generic dplyr::relocate() function.

SpatRaster

Relocate layers of a SpatRaster.

SpatVector

The result is a SpatVector with the attributes on a different order.

See Also

dplyr::relocate()

Other dplyr verbs that operate on columns: glimpse.Spat, mutate.Spat, pull.Spat, rename.Spat, select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)


f <- system.file("extdata/cyl_tile.tif", package = "tidyterra")
spatrast <- rast(f) %>% mutate(aa = 1, bb = 2, cc = 3)

names(spatrast)


spatrast %>%
  relocate(bb, .before = cyl_tile_3) %>%
  relocate(cyl_tile_1, .after = last_col())

Rename layers/attributes

Description

rename() changes the names of individual layers/attributes using new_name = old_name syntax; rename_with() renames layers/attributes using a function.

Usage

## S3 method for class 'SpatRaster'
rename(.data, ...)

## S3 method for class 'SpatRaster'
rename_with(.data, .fn, .cols = everything(), ...)

## S3 method for class 'SpatVector'
rename(.data, ...)

## S3 method for class 'SpatVector'
rename_with(.data, .fn, .cols = everything(), ...)

Arguments

.data

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

...

Depending on the function:

  • For ⁠rename.Spat*()⁠: <tidy-select>. Use new_name = old_name to rename selected variables.

  • For rename_with(): additional arguments passed onto .fn.

.fn

A function used to transform the selected .cols. Should return a character vector the same length as the input.

.cols

<tidy-select> Columns to rename; defaults to all columns.

Value

A ⁠Spat*⁠ object of the same class than .data. See Methods.

terra equivalent

⁠names(Spat*) <- c("a", "b", "c")⁠

Methods

Implementation of the generic dplyr::rename() function.

SpatRaster

Rename layers of a SpatRaster.

SpatVector

The result is a SpatVector with the renamed attributes on the function call.

See Also

dplyr::rename()

Other single table verbs: arrange.SpatVector(), filter.Spat, mutate.Spat, select.Spat, slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on columns: glimpse.Spat, mutate.Spat, pull.Spat, relocate.Spat, select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("extdata/cyl_tile.tif", package = "tidyterra")
spatrast <- rast(f) %>% mutate(aa = 1, bb = 2, cc = 3)

spatrast

spatrast %>% rename(
  this_first = cyl_tile_1,
  this_second = cyl_tile_2
)

spatrast %>% rename_with(
  toupper,
  .cols = starts_with("c")
)

Replace NAs with specified values

Description

Replace NA values on layers/attributes with specified values

Usage

## S3 method for class 'SpatRaster'
replace_na(data, replace = list(), ...)

## S3 method for class 'SpatVector'
replace_na(data, replace, ...)

Arguments

data

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

replace

list of values, with one value for each layer/attribute that has NA values to be replaced.

...

Ignored

Value

A ⁠Spat*⁠ object of the same class than data. Geometries and spatial attributes are preserved.

terra equivalent

Use ⁠r[is.na(r)] <- <replacement>⁠

See Also

tidyr::replace_na()

Other tidyr verbs for handling missing values: drop_na.Spat, fill.SpatVector()

Other tidyr methods: drop_na.Spat, fill.SpatVector(), pivot_longer.SpatVector(), pivot_wider.SpatVector()

Examples

library(terra)

f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
r <- rast(f)

r %>% plot()

r %>%
  replace_na(list(tavg_04 = 6, tavg_06 = 20)) %>%
  plot()

Group SpatVector objects by rows

Description

rowwise() allows you to compute on a SpatVector a row-at-a-time. This is most useful when a vectorised function doesn't exist.

Most dplyr verbs implementation in tidyterra preserve row-wise grouping, with the exception of summarise.SpatVector(). You can explicitly ungroup with ungroup.SpatVector() or as_tibble(), or convert to a grouped SpatVector with group_by.SpatVector().

Usage

## S3 method for class 'SpatVector'
rowwise(data, ...)

Arguments

data

A SpatVector object. See Methods.

...

<tidy-select> Variables to be preserved when calling summarise.SpatVector(). This is typically a set of variables whose combination uniquely identify each row. See dplyr::rowwise().

Details

See Details on dplyr::rowwise().

Value

The same SpatVector object with an additional attribute.

Methods

Implementation of the generic dplyr::rowwise() function for SpatVector objects.

When mixing terra and dplyr syntax on a row-wise SpatVector (i.e, subsetting a SpatVector like v[1:3,1:2]) the groups attribute can be corrupted. tidyterra would try to re-generate the SpatVector. This would be triggered the next time you use a dplyr verb on your SpatVector.

Note also that some operations (as terra::spatSample()) would create a new SpatVector. In these cases, the result won't preserve the groups attribute. Use rowwise.SpatVector() to re-group.

See Also

dplyr::rowwise()

Other dplyr verbs that operate on group of rows: count.SpatVector(), group-by.SpatVector, summarise.SpatVector()

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
library(dplyr)

v <- terra::vect(system.file("shape/nc.shp", package = "sf"))

# Select new births
nb <- v %>%
  select(starts_with("NWBIR")) %>%
  glimpse()

# Compute the mean of NWBIR on each geometry
nb %>%
  rowwise() %>%
  mutate(nb_mean = mean(c(NWBIR74, NWBIR79)))

# Additional examples

# use c_across() to more easily select many variables
nb %>%
  rowwise() %>%
  mutate(m = mean(c_across(NWBIR74:NWBIR79)))

# Compute the minimum of x and y in each row

nb %>%
  rowwise() %>%
  mutate(min = min(c_across(NWBIR74:NWBIR79)))

# Summarising
v %>%
  rowwise() %>%
  summarise(mean_bir = mean(BIR74, BIR79)) %>%
  glimpse() %>%
  autoplot(aes(fill = mean_bir))

# Supply a variable to be kept
v %>%
  mutate(id2 = as.integer(CNTY_ID / 100)) %>%
  rowwise(id2) %>%
  summarise(mean_bir = mean(BIR74, BIR79)) %>%
  glimpse() %>%
  autoplot(aes(fill = as.factor(id2)))

Gradient scales from Wikipedia color schemes

Description

Implementation based on the Wikipedia Colorimetric conventions for topographic maps.

Three scales are provided:

  • ⁠scale_*_wiki_d()⁠: For discrete values.

  • ⁠scale_*_wiki_c()⁠: For continuous values.

  • ⁠scale_*_wiki_b()⁠: For binning continuous values.

Additionally, a color palette wiki.colors() is provided. See also grDevices::terrain.colors() for details.

Additional parameters ... would be passed on to:

Note that tidyterra just documents a selection of these additional parameters, check the ggplot2 functions listed above to see the full range of parameters accepted by these scales.

Usage

scale_fill_wiki_d(
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_wiki_d(
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_wiki_c(
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_wiki_c(
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_wiki_b(
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_wiki_b(
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

wiki.colors(n, alpha = 1, rev = FALSE)

Arguments

...

Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale, ggplot2::binned_scale

breaks

One of:

  • NULL for no breaks

  • waiver() for the default breaks (the scale limits)

  • A character vector of breaks

  • A function that takes the limits as input and returns breaks as output. Also accepts rlang lambda function notation.

labels

One of:

  • NULL for no labels

  • waiver() for the default labels computed by the transformation object

  • A character vector giving labels (must be same length as breaks)

  • An expression vector (must be the same length as breaks). See ?plotmath for details.

  • A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

limits

One of:

  • NULL to use the default scale values

  • A character vector that defines possible values of the scale and their order

  • A function that accepts the existing (automatic) values and returns new ones. Also accepts rlang lambda function notation.

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

minor_breaks

One of:

  • NULL for no minor breaks

  • waiver() for the default breaks (one minor break between each major break)

  • A numeric vector of positions

  • A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation. When the function has two arguments, it will be given the limits and major breaks.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

nice.breaks

Logical. Should breaks be attempted placed at nice values instead of exactly evenly spaced between the limits. If TRUE (default) the scale will ask the transformation object to create breaks, and this may result in a different number of breaks than requested. Ignored if breaks are given explicitly.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

na.translate

Should NA values be removed from the legend? Default is TRUE.

na.value

Missing values will be replaced with this value. By default, tidyterra uses na.value = "transparent" so cells with NA are not filled. See also #120.

drop

Should unused factor levels be omitted from the scale? The default (TRUE) removes unused factors.

direction

Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed.

guide

A function used to create a guide or its name. See guides() for more information.

n

the number of colors (1\ge 1) to be in the palette.

rev

logical indicating whether the ordering of the colors should be reversed.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

See Also

terra::plot(), ggplot2::scale_fill_viridis_c()

See also ggplot2 docs on additional ... parameters.

Other gradient scales and palettes for hypsometry: scale_cross_blended, scale_grass, scale_hypso, scale_princess, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

# Palette
plot(volcano2_rast, col = wiki.colors(100))

library(ggplot2)
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_wiki_c()

# Binned
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_wiki_b(breaks = seq(70, 200, 10))

# With discrete values
factor <- volcano2_rast %>% mutate(cats = cut(elevation,
  breaks = c(100, 120, 130, 150, 170, 200),
  labels = c(
    "Very Low", "Low", "Average", "High",
    "Very High"
  )
))


ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_wiki_d(na.value = "gray10")

Discrete scales based in the color table of a SpatRaster

Description

Some categorical SpatRaster objects may have an associated color table. This function extract those values. These functions generates scales and vector of colors based on the color table terra::coltab() associated to a SpatRaster.

You can also get a vector of colors named with the corresponding factor with get_coltab_pal().

Additional parameters ... would be passed on to ggplot2::discrete_scale().

Note that tidyterra just documents a selection of these additional parameters, check ggplot2::discrete_scale() to see the full range of parameters accepted.

Usage

scale_fill_coltab(
  data,
  ...,
  alpha = 1,
  na.translate = FALSE,
  na.value = "transparent",
  drop = TRUE
)

scale_colour_coltab(
  data,
  ...,
  alpha = 1,
  na.translate = FALSE,
  na.value = "transparent",
  drop = TRUE
)

get_coltab_pal(x)

Arguments

data, x

A SpatRaster with one or several color tables. See terra::has.colors().

...

Arguments passed on to ggplot2::discrete_scale

breaks

One of:

  • NULL for no breaks

  • waiver() for the default breaks (the scale limits)

  • A character vector of breaks

  • A function that takes the limits as input and returns breaks as output. Also accepts rlang lambda function notation.

labels

One of:

  • NULL for no labels

  • waiver() for the default labels computed by the transformation object

  • A character vector giving labels (must be same length as breaks)

  • An expression vector (must be the same length as breaks). See ?plotmath for details.

  • A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

limits

One of:

  • NULL to use the default scale values

  • A character vector that defines possible values of the scale and their order

  • A function that accepts the existing (automatic) values and returns new ones. Also accepts rlang lambda function notation.

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

na.translate

Should NA values be removed from the legend? Default is TRUE.

na.value

Missing values will be replaced with this value. By default, tidyterra uses na.value = "transparent" so cells with NA are not filled. See also #120.

drop

Should unused factor levels be omitted from the scale? The default (TRUE) removes unused factors.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

See Also

terra::coltab(), ggplot2::discrete_scale(), ggplot2::scale_fill_manual(),

Examples

library(terra)
# Geological Eras
# Spanish Geological Survey (IGME)

r <- rast(system.file("extdata/cyl_era.tif", package = "tidyterra"))

plot(r)

# Get coltab
coltab_pal <- get_coltab_pal(r)

coltab_pal


# With ggplot2 + tidyterra
library(ggplot2)

gg <- ggplot() +
  geom_spatraster(data = r)


# Default plot
gg

# With coltabs
gg +
  scale_fill_coltab(data = r)

Cross blended hypsometric tints scales

Description

Implementation of the cross blended hypsometric gradients presented on doi:10.14714/CP69.20. The following fill scales and palettes are provided:

  • ⁠scale_*_cross_blended_d()⁠: For discrete values.

  • ⁠scale_*_cross_blended_c()⁠: For continuous values.

  • ⁠scale_*_cross_blended_b()⁠: For binning continuous values.

  • cross_blended.colors(): A gradient color palette. See also grDevices::terrain.colors() for details.

An additional set of scales is provided. These scales can act as hypsometric (or bathymetric) tints.

  • ⁠scale_*_cross_blended_tint_d()⁠: For discrete values.

  • ⁠scale_*_cross_blended_tint_c()⁠: For continuous values.

  • ⁠scale_*_cross_blended_tint_b()⁠: For binning continuous values.

  • cross_blended.colors2(): A gradient color palette. See also grDevices::terrain.colors() for details.

See Details.

Additional parameters ... would be passed on to:

Note that tidyterra just documents a selection of these additional parameters, check the ggplot2 functions listed above to see the full range of parameters accepted by these scales.

Usage

scale_fill_cross_blended_d(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_cross_blended_d(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_cross_blended_c(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_cross_blended_c(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_cross_blended_b(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_cross_blended_b(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

cross_blended.colors(n, palette = "cold_humid", alpha = 1, rev = FALSE)

scale_fill_cross_blended_tint_d(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_cross_blended_tint_d(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_cross_blended_tint_c(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_cross_blended_tint_c(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_cross_blended_tint_b(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_cross_blended_tint_b(
  palette = "cold_humid",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  na.value = "transparent",
  guide = "coloursteps"
)

cross_blended.colors2(n, palette = "cold_humid", alpha = 1, rev = FALSE)

Arguments

palette

A valid palette name. The name is matched to the list of available palettes, ignoring upper vs. lower case. See cross_blended_hypsometric_tints_db for more info. Values available are: "arid", "cold_humid", "polar", "warm_humid".

...

Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale, ggplot2::binned_scale

breaks

One of:

  • NULL for no breaks

  • waiver() for the default breaks (the scale limits)

  • A character vector of breaks

  • A function that takes the limits as input and returns breaks as output. Also accepts rlang lambda function notation.

labels

One of:

  • NULL for no labels

  • waiver() for the default labels computed by the transformation object

  • A character vector giving labels (must be same length as breaks)

  • An expression vector (must be the same length as breaks). See ?plotmath for details.

  • A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

minor_breaks

One of:

  • NULL for no minor breaks

  • waiver() for the default breaks (one minor break between each major break)

  • A numeric vector of positions

  • A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation. When the function has two arguments, it will be given the limits and major breaks.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

nice.breaks

Logical. Should breaks be attempted placed at nice values instead of exactly evenly spaced between the limits. If TRUE (default) the scale will ask the transformation object to create breaks, and this may result in a different number of breaks than requested. Ignored if breaks are given explicitly.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction

Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed.

na.translate

Should NA values be removed from the legend? Default is TRUE.

drop

Should unused factor levels be omitted from the scale? The default (TRUE) removes unused factors.

na.value

Missing values will be replaced with this value. By default, tidyterra uses na.value = "transparent" so cells with NA are not filled. See also #120.

guide

A function used to create a guide or its name. See guides() for more information.

n

the number of colors (1\ge 1) to be in the palette.

rev

logical indicating whether the ordering of the colors should be reversed.

values

if colours should not be evenly positioned along the gradient this vector gives the position (between 0 and 1) for each colour in the colours vector. See rescale() for a convenience function to map an arbitrary range to between 0 and 1.

limits

One of:

  • NULL to use the default scale range

  • A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum

  • A function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang lambda function notation. Note that setting limits on positional scales will remove data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see coord_cartesian()).

Details

On ⁠scale_*_cross_blended_tint_*⁠ palettes, the position of the gradients and the limits of the palette are redefined. Instead of treating the color palette as a continuous gradient, they are rescaled to act as a hypsometric tint. A rough description of these tints are:

  • Blue colors: Negative values.

  • Green colors: 0 to 1.000 values.

  • Browns: 1000 to 4.000 values.

  • Whites: Values higher than 4.000.

The following orientation would vary depending on the palette definition (see cross_blended_hypsometric_tints_db for an example on how this could be achieved).

Note that the setup of the palette may not be always suitable for your specific data. For example, a SpatRaster of small parts of the globe (and with a limited range of elevations) may not be well represented. As an example, a SpatRaster with a range of values on ⁠[100, 200]⁠ would appear almost as an uniform color. This could be adjusted using the limits/values parameters.

cross_blended.colors2() provides a gradient color palette where the distance between colors is different depending of the type of color. In contrast, cross_blended.colors() provides an uniform gradient across colors. See Examples.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

Source

  • Patterson, T., & Jenny, B. (2011). The Development and Rationale of Cross-blended Hypsometric Tints. Cartographic Perspectives, (69), 31 - 46. doi:10.14714/CP69.20.

  • Patterson, T. (2004). Using Cross-blended Hypsometric Tints for Generalized Environmental Mapping. Accessed June 10, 2022. http://www.shadedrelief.com/hypso/hypso.html

See Also

cross_blended_hypsometric_tints_db, terra::plot(), terra::minmax(), ggplot2::scale_fill_viridis_c().

See also ggplot2 docs on additional ... parameters.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_grass, scale_hypso, scale_princess, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

# Palette
plot(volcano2_rast, col = cross_blended.colors(100, palette = "arid"))

# Palette with uneven colors
plot(volcano2_rast, col = cross_blended.colors2(100, palette = "arid"))


library(ggplot2)
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_cross_blended_c(palette = "cold_humid")

# Use hypsometric  tint version...
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_cross_blended_tint_c(palette = "cold_humid")

# ...but not suitable for the range of the raster: adjust
my_lims <- minmax(volcano2_rast) %>% as.integer() + c(-2, 2)

ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_cross_blended_tint_c(
    palette = "cold_humid",
    limits = my_lims
  )

# Full map with true tints

f_asia <- system.file("extdata/asia.tif", package = "tidyterra")
asia <- rast(f_asia)

ggplot() +
  geom_spatraster(data = asia) +
  scale_fill_cross_blended_tint_c(
    palette = "warm_humid",
    labels = scales::label_number(),
    breaks = c(-10000, 0, 5000, 8000),
    guide = guide_colorbar(reverse = TRUE)
  ) +
  labs(fill = "elevation (m)") +
  theme(
    legend.position = "bottom",
    legend.title.position = "top",
    legend.key.width = rel(3),
    legend.ticks = element_line(colour = "black", linewidth = 0.3),
    legend.direction = "horizontal"
  )

# Binned
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_cross_blended_b(breaks = seq(70, 200, 25), palette = "arid")

# With limits and breaks
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_cross_blended_tint_b(
    breaks = seq(75, 200, 25),
    palette = "arid",
    limits = my_lims
  )

# With discrete values
factor <- volcano2_rast %>%
  mutate(cats = cut(elevation,
    breaks = c(100, 120, 130, 150, 170, 200),
    labels = c(
      "Very Low", "Low", "Average", "High",
      "Very High"
    )
  ))

ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_cross_blended_d(na.value = "gray10", palette = "cold_humid")


# Tint version
ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_cross_blended_tint_d(
    na.value = "gray10",
    palette = "cold_humid"
  )

# Display all the cross-blended palettes

pals <- unique(cross_blended_hypsometric_tints_db$pal)

# Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
  image(
    x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
    col = cross_blended.colors(ncols, i), main = i,
    ylab = "", xaxt = "n", yaxt = "n", bty = "n"
  )
}
par(opar)
# Display all the cross-blended palettes on version 2

pals <- unique(cross_blended_hypsometric_tints_db$pal)

# Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
  image(
    x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
    col = cross_blended.colors2(ncols, i), main = i,
    ylab = "", xaxt = "n", yaxt = "n", bty = "n"
  )
}
par(opar)

GRASS scales

Description

Implementation of GRASS color tables. The following fill scales and palettes are provided:

  • ⁠scale_*_grass_d()⁠: For discrete values.

  • ⁠scale_*_grass_c()⁠: For continuous values.

  • ⁠scale_*_grass_b()⁠: For binning continuous values.

  • grass.colors(): Gradient color palette. See also grDevices::terrain.colors() for details.

Additional parameters ... would be passed on to:

Note that tidyterra just documents a selection of these additional parameters, check the ggplot2 functions listed above to see the full range of parameters accepted by these scales.

These palettes are an implementation of terra::map.pal(), that is the default color palettes provided by terra::plot() (terra ⁠> 1.7.78⁠).

Usage

scale_fill_grass_d(
  palette = "viridis",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_grass_d(
  palette = "viridis",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_grass_c(
  palette = "viridis",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  use_grass_range = TRUE,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_grass_c(
  palette = "viridis",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  use_grass_range = TRUE,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_grass_b(
  palette = "viridis",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  use_grass_range = TRUE,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_grass_b(
  palette = "viridis",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  use_grass_range = TRUE,
  na.value = "transparent",
  guide = "coloursteps"
)

grass.colors(n, palette = "viridis", alpha = 1, rev = FALSE)

Arguments

palette

A valid palette name. The name is matched to the list of available palettes, ignoring upper vs. lower case. See grass_db for more info.

...

Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale, ggplot2::binned_scale

breaks

One of:

  • NULL for no breaks

  • waiver() for the default breaks (the scale limits)

  • A character vector of breaks

  • A function that takes the limits as input and returns breaks as output. Also accepts rlang lambda function notation.

labels

One of:

  • NULL for no labels

  • waiver() for the default labels computed by the transformation object

  • A character vector giving labels (must be same length as breaks)

  • An expression vector (must be the same length as breaks). See ?plotmath for details.

  • A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

minor_breaks

One of:

  • NULL for no minor breaks

  • waiver() for the default breaks (one minor break between each major break)

  • A numeric vector of positions

  • A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation. When the function has two arguments, it will be given the limits and major breaks.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

nice.breaks

Logical. Should breaks be attempted placed at nice values instead of exactly evenly spaced between the limits. If TRUE (default) the scale will ask the transformation object to create breaks, and this may result in a different number of breaks than requested. Ignored if breaks are given explicitly.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction

Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed.

na.translate

Should NA values be removed from the legend? Default is TRUE.

drop

Should unused factor levels be omitted from the scale? The default (TRUE) removes unused factors.

values

if colours should not be evenly positioned along the gradient this vector gives the position (between 0 and 1) for each colour in the colours vector. See rescale() for a convenience function to map an arbitrary range to between 0 and 1.

limits

One of:

  • NULL to use the default scale range

  • A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum

  • A function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang lambda function notation. Note that setting limits on positional scales will remove data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see coord_cartesian()).

use_grass_range

Logical. Should the scale use the suggested range when plotting? See Details.

na.value

Missing values will be replaced with this value. By default, tidyterra uses na.value = "transparent" so cells with NA are not filled. See also #120.

guide

A function used to create a guide or its name. See guides() for more information.

n

the number of colors (1\ge 1) to be in the palette.

rev

logical indicating whether the ordering of the colors should be reversed.

Details

Some palettes are mapped by default to a specific range of values (see grass_db). However, it is possible to modify this behaviour with the use_grass_range argument, When FALSE the color scales would be mapped to the range of values of the color/fill aesthethics, See Examples.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aes().

terra equivalent

terra::map.pal()

Source

Derived from https://github.com/OSGeo/grass/tree/main/lib/gis/colors. See also r.color - GRASS GIS Manual.

References

GRASS Development Team (2024). Geographic Resources Analysis Support System (GRASS) Software, Version 8.3.2. Open Source Geospatial Foundation, USA. https://grass.osgeo.org.

See Also

grass_db, terra::plot(), terra::minmax(), ggplot2::scale_fill_viridis_c().

See also ggplot2 docs on additional ... parameters:

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended, scale_hypso, scale_princess, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

# Palette
plot(volcano2_rast, col = grass.colors(100, palette = "haxby"))

library(ggplot2)
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_grass_c(palette = "terrain")

# Use with no default limits
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_grass_c(palette = "terrain", use_grass_range = FALSE)

# Full map with true tints

f_asia <- system.file("extdata/asia.tif", package = "tidyterra")
asia <- rast(f_asia)

ggplot() +
  geom_spatraster(data = asia) +
  scale_fill_grass_c(
    palette = "srtm_plus",
    labels = scales::label_number(),
    breaks = c(-10000, 0, 5000, 8000),
    guide = guide_colorbar(reverse = FALSE)
  ) +
  labs(fill = "elevation (m)") +
  theme(
    legend.position = "bottom",
    legend.title.position = "top",
    legend.key.width = rel(3),
    legend.ticks = element_line(colour = "black", linewidth = 0.3),
    legend.direction = "horizontal"
  )

# Binned
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_grass_b(breaks = seq(70, 200, 25), palette = "sepia")


# With discrete values
factor <- volcano2_rast %>%
  mutate(cats = cut(elevation,
    breaks = c(100, 120, 130, 150, 170, 200),
    labels = c(
      "Very Low", "Low", "Average", "High",
      "Very High"
    )
  ))

ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_grass_d(palette = "soilmoisture")


# Display all the GRASS palettes
data("grass_db")

pals_all <- unique(grass_db$pal)

# In batches
pals <- pals_all[c(1:25)]
# Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
  image(
    x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
    col = grass.colors(ncols, i), main = i,
    ylab = "", xaxt = "n", yaxt = "n", bty = "n"
  )
}
par(opar)

# Second batch
pals <- pals_all[-c(1:25)]

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
  image(
    x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
    col = grass.colors(ncols, i), main = i,
    ylab = "", xaxt = "n", yaxt = "n", bty = "n"
  )
}
par(opar)

Gradient scales for representing hypsometry and bathymetry

Description

Implementation of a selection of gradient palettes available in cpt-city.

The following scales and palettes are provided:

  • ⁠scale_*_hypso_d()⁠: For discrete values.

  • ⁠scale_*_hypso_c()⁠: For continuous values.

  • ⁠scale_*_hypso_b()⁠: For binning continuous values.

  • hypso.colors(): A gradient color palette. See also grDevices::terrain.colors() for details.

An additional set of scales is provided. These scales can act as hypsometric (or bathymetric) tints.

  • ⁠scale_*_hypso_tint_d()⁠: For discrete values.

  • ⁠scale_*_hypso_tint_c()⁠: For continuous values.

  • ⁠scale_*_hypso_tint_b()⁠: For binning continuous values.

  • hypso.colors2(): A gradient color palette. See also grDevices::terrain.colors() for details.

See Details.

Additional parameters ... would be passed on to:

Note that tidyterra just documents a selection of these additional parameters, check the ggplot2 functions listed above to see the full range of parameters accepted by these scales.

Usage

scale_fill_hypso_d(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_hypso_d(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_hypso_c(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_hypso_c(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_hypso_b(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_hypso_b(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

hypso.colors(n, palette = "etopo1_hypso", alpha = 1, rev = FALSE)

scale_fill_hypso_tint_d(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_hypso_tint_d(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_hypso_tint_c(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_hypso_tint_c(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_hypso_tint_b(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_hypso_tint_b(
  palette = "etopo1_hypso",
  ...,
  alpha = 1,
  direction = 1,
  values = NULL,
  limits = NULL,
  na.value = "transparent",
  guide = "coloursteps"
)

hypso.colors2(n, palette = "etopo1_hypso", alpha = 1, rev = FALSE)

Arguments

palette

A valid palette name. The name is matched to the list of available palettes, ignoring upper vs. lower case. See hypsometric_tints_db for more info. Values available are: "arctic", "arctic_bathy", "arctic_hypso", "c3t1", "colombia", "colombia_bathy", "colombia_hypso", "dem_poster", "dem_print", "dem_screen", "etopo1", "etopo1_bathy", "etopo1_hypso", "gmt_globe", "gmt_globe_bathy", "gmt_globe_hypso", "meyers", "meyers_bathy", "meyers_hypso", "moon", "moon_bathy", "moon_hypso", "nordisk-familjebok", "nordisk-familjebok_bathy", "nordisk-familjebok_hypso", "pakistan", "spain", "usgs-gswa2", "utah_1", "wiki-2.0", "wiki-2.0_bathy", "wiki-2.0_hypso", "wiki-schwarzwald-cont".

...

Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale, ggplot2::binned_scale

breaks

One of:

  • NULL for no breaks

  • waiver() for the default breaks (the scale limits)

  • A character vector of breaks

  • A function that takes the limits as input and returns breaks as output. Also accepts rlang lambda function notation.

labels

One of:

  • NULL for no labels

  • waiver() for the default labels computed by the transformation object

  • A character vector giving labels (must be same length as breaks)

  • An expression vector (must be the same length as breaks). See ?plotmath for details.

  • A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

minor_breaks

One of:

  • NULL for no minor breaks

  • waiver() for the default breaks (one minor break between each major break)

  • A numeric vector of positions

  • A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation. When the function has two arguments, it will be given the limits and major breaks.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

nice.breaks

Logical. Should breaks be attempted placed at nice values instead of exactly evenly spaced between the limits. If TRUE (default) the scale will ask the transformation object to create breaks, and this may result in a different number of breaks than requested. Ignored if breaks are given explicitly.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction

Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed.

na.translate

Should NA values be removed from the legend? Default is TRUE.

drop

Should unused factor levels be omitted from the scale? The default (TRUE) removes unused factors.

na.value

Missing values will be replaced with this value. By default, tidyterra uses na.value = "transparent" so cells with NA are not filled. See also #120.

guide

A function used to create a guide or its name. See guides() for more information.

n

the number of colors (1\ge 1) to be in the palette.

rev

logical indicating whether the ordering of the colors should be reversed.

values

if colours should not be evenly positioned along the gradient this vector gives the position (between 0 and 1) for each colour in the colours vector. See rescale() for a convenience function to map an arbitrary range to between 0 and 1.

limits

One of:

  • NULL to use the default scale range

  • A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum

  • A function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang lambda function notation. Note that setting limits on positional scales will remove data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see coord_cartesian()).

Details

On ⁠scale_*_hypso_tint_*⁠ palettes, the position of the gradients and the limits of the palette are redefined. Instead of treating the color palette as a continuous gradient, they are rescaled to act as a hypsometric tint. A rough description of these tints are:

  • Blue colors: Negative values.

  • Green colors: 0 to 1.000 values.

  • Browns: 1000 to 4.000 values.

  • Whites: Values higher than 4.000.

The following orientation would vary depending on the palette definition (see hypsometric_tints_db for an example on how this could be achieved).

Note that the setup of the palette may not be always suitable for your specific data. For example, a SpatRaster of small parts of the globe (and with a limited range of elevations) may not be well represented. As an example, a SpatRaster with a range of values on ⁠[100, 200]⁠ would appear almost as an uniform color. This could be adjusted using the limits/values parameters.

hypso.colors2() provides a gradient color palette where the distance between colors is different depending of the type of color. In contrast, hypso.colors() provides an uniform gradient across colors. See Examples.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

Source

cpt-city: http://seaviewsensing.com/pub/cpt-city/.

See Also

hypsometric_tints_db, terra::plot(), terra::minmax(), ggplot2::scale_fill_viridis_c()

See also ggplot2 docs on additional ... parameters.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended, scale_grass, scale_princess, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

# Palette
plot(volcano2_rast, col = hypso.colors(100, palette = "wiki-2.0_hypso"))

# Palette with uneven colors
plot(volcano2_rast, col = hypso.colors2(100, palette = "wiki-2.0_hypso"))


library(ggplot2)
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_hypso_c(palette = "colombia_hypso")

# Use hypsometric  tint version...
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_hypso_tint_c(palette = "colombia_hypso")

# ...but not suitable for the range of the raster: adjust
my_lims <- minmax(volcano2_rast) %>% as.integer() + c(-2, 2)

ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_hypso_tint_c(
    palette = "colombia_hypso",
    limits = my_lims
  )

# Full map with true tints

f_asia <- system.file("extdata/asia.tif", package = "tidyterra")
asia <- rast(f_asia)

ggplot() +
  geom_spatraster(data = asia) +
  scale_fill_hypso_tint_c(
    palette = "etopo1",
    labels = scales::label_number(),
    breaks = c(-10000, 0, 5000, 8000),
    guide = guide_colorbar(reverse = TRUE)
  ) +
  labs(fill = "elevation (m)") +
  theme(
    legend.position = "bottom",
    legend.title.position = "top",
    legend.key.width = rel(3),
    legend.ticks = element_line(colour = "black", linewidth = 0.3),
    legend.direction = "horizontal"
  )

# Binned
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_hypso_b(breaks = seq(70, 200, 25), palette = "wiki-2.0_hypso")

# With limits and breaks
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_hypso_tint_b(
    breaks = seq(75, 200, 25),
    palette = "wiki-2.0_hypso",
    limits = my_lims
  )

# With discrete values
factor <- volcano2_rast %>% mutate(cats = cut(elevation,
  breaks = c(100, 120, 130, 150, 170, 200),
  labels = c(
    "Very Low", "Low", "Average", "High",
    "Very High"
  )
))

ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_hypso_d(na.value = "gray10", palette = "dem_poster")


# Tint version
ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_hypso_tint_d(na.value = "gray10", palette = "dem_poster")

# Display all the cpl_city palettes

pals <- unique(hypsometric_tints_db$pal)

# Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
  image(
    x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
    col = hypso.colors(ncols, i), main = i,
    ylab = "", xaxt = "n", yaxt = "n", bty = "n"
  )
}
par(opar)
# Display all the cpl_city palettes on version 2

pals <- unique(hypsometric_tints_db$pal)

# Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
  image(
    x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
    col = hypso.colors2(ncols, i), main = i,
    ylab = "", xaxt = "n", yaxt = "n", bty = "n"
  )
}
par(opar)

Gradient scales from princess color schemes

Description

Implementation of the gradient palettes presented in https://leahsmyth.github.io/Princess-Colour-Schemes/index.html. Three scales are provided:

  • ⁠scale_*_princess_d()⁠: For discrete values.

  • ⁠scale_*_princess_c()⁠: For continuous values.

  • ⁠scale_*_princess_b()⁠: For binning continuous values.

Additionally, a color palette princess.colors() is provided. See also grDevices::terrain.colors() for details.

Additional parameters ... would be passed on to:

Note that tidyterra just documents a selection of these additional parameters, check the ggplot2 functions listed above to see the full range of parameters accepted by these scales.

Usage

scale_fill_princess_d(
  palette = "snow",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_princess_d(
  palette = "snow",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_princess_c(
  palette = "snow",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_princess_c(
  palette = "snow",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_princess_b(
  palette = "snow",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_princess_b(
  palette = "snow",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

princess.colors(n, palette = "snow", alpha = 1, rev = FALSE)

Arguments

palette

A valid palette name. The name is matched to the list of available palettes, ignoring upper vs. lower case. Values available are: "snow", "ella", "bell", "aura", "denmark", "france", "arabia", "america", "asia", "neworleans", "punz", "scotland", "cold", "norge", "maori".

...

Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale, ggplot2::binned_scale

breaks

One of:

  • NULL for no breaks

  • waiver() for the default breaks (the scale limits)

  • A character vector of breaks

  • A function that takes the limits as input and returns breaks as output. Also accepts rlang lambda function notation.

labels

One of:

  • NULL for no labels

  • waiver() for the default labels computed by the transformation object

  • A character vector giving labels (must be same length as breaks)

  • An expression vector (must be the same length as breaks). See ?plotmath for details.

  • A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

limits

One of:

  • NULL to use the default scale values

  • A character vector that defines possible values of the scale and their order

  • A function that accepts the existing (automatic) values and returns new ones. Also accepts rlang lambda function notation.

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

minor_breaks

One of:

  • NULL for no minor breaks

  • waiver() for the default breaks (one minor break between each major break)

  • A numeric vector of positions

  • A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation. When the function has two arguments, it will be given the limits and major breaks.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

nice.breaks

Logical. Should breaks be attempted placed at nice values instead of exactly evenly spaced between the limits. If TRUE (default) the scale will ask the transformation object to create breaks, and this may result in a different number of breaks than requested. Ignored if breaks are given explicitly.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction

Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed.

na.translate

Should NA values be removed from the legend? Default is TRUE.

drop

Should unused factor levels be omitted from the scale? The default (TRUE) removes unused factors.

na.value

Missing values will be replaced with this value. By default, tidyterra uses na.value = "transparent" so cells with NA are not filled. See also #120.

guide

A function used to create a guide or its name. See guides() for more information.

n

the number of colors (1\ge 1) to be in the palette.

rev

logical indicating whether the ordering of the colors should be reversed.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

Source

https://github.com/LeahSmyth/Princess-Colour-Schemes.

See Also

terra::plot(), ggplot2::scale_fill_viridis_c()

See also ggplot2 docs on additional ... parameters.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended, scale_grass, scale_hypso, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

# Palette
plot(volcano2_rast, col = princess.colors(100))

library(ggplot2)
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_princess_c()

# Binned
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_princess_b(breaks = seq(70, 200, 10), palette = "denmark")

# With discrete values
factor <- volcano2_rast %>% mutate(cats = cut(elevation,
  breaks = c(100, 120, 130, 150, 170, 200),
  labels = c(
    "Very Low", "Low", "Average", "High",
    "Very High"
  )
))


ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_princess_d(na.value = "gray10", palette = "maori")


# Display all the princess palettes

pals <- unique(princess_db$pal)

# Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
  image(
    x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
    col = princess.colors(ncols, i), main = i,
    ylab = "", xaxt = "n", yaxt = "n", bty = "n"
  )
}
par(opar)

Terrain colour scales from grDevices

Description

Implementation of the classic color palette terrain.colors():

  • ⁠scale_*_terrain_d()⁠: For discrete values.

  • ⁠scale_*_terrain_c()⁠: For continuous values.

  • ⁠scale_*_terrain_b()⁠: For binning continuous values.

Additional parameters ... would be passed on to:

Note that tidyterra just documents a selection of these additional parameters, check the ggplot2 functions listed above to see the full range of parameters accepted by these scales.

Usage

scale_fill_terrain_d(
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_terrain_d(
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_terrain_c(
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_terrain_c(
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_terrain_b(
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_terrain_b(
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

Arguments

...

Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale, ggplot2::binned_scale

breaks

One of:

  • NULL for no breaks

  • waiver() for the default breaks (the scale limits)

  • A character vector of breaks

  • A function that takes the limits as input and returns breaks as output. Also accepts rlang lambda function notation.

labels

One of:

  • NULL for no labels

  • waiver() for the default labels computed by the transformation object

  • A character vector giving labels (must be same length as breaks)

  • An expression vector (must be the same length as breaks). See ?plotmath for details.

  • A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

limits

One of:

  • NULL to use the default scale values

  • A character vector that defines possible values of the scale and their order

  • A function that accepts the existing (automatic) values and returns new ones. Also accepts rlang lambda function notation.

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

minor_breaks

One of:

  • NULL for no minor breaks

  • waiver() for the default breaks (one minor break between each major break)

  • A numeric vector of positions

  • A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation. When the function has two arguments, it will be given the limits and major breaks.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

nice.breaks

Logical. Should breaks be attempted placed at nice values instead of exactly evenly spaced between the limits. If TRUE (default) the scale will ask the transformation object to create breaks, and this may result in a different number of breaks than requested. Ignored if breaks are given explicitly.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction

Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed.

na.translate

Should NA values be removed from the legend? Default is TRUE.

drop

Should unused factor levels be omitted from the scale? The default (TRUE) removes unused factors.

na.value

Missing values will be replaced with this value. By default, tidyterra uses na.value = "transparent" so cells with NA are not filled. See also #120.

guide

A function used to create a guide or its name. See guides() for more information.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

See Also

terra::plot(), ggplot2::scale_fill_viridis_c() and ggplot2 docs on additional ... parameters.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended, scale_grass, scale_hypso, scale_princess, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

library(ggplot2)
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_terrain_c()

# Binned
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_terrain_b(breaks = seq(70, 200, 10))

# With discrete values
factor <- volcano2_rast %>% mutate(cats = cut(elevation,
  breaks = c(100, 120, 130, 150, 170, 200),
  labels = c(
    "Very Low", "Low", "Average", "High",
    "Very High"
  )
))


ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_terrain_d(na.value = "gray10")

Gradient scales from WhiteboxTools color schemes

Description

Implementation of the gradient palettes provided by WhiteboxTools. Three scales are provided:

  • ⁠scale_*_whitebox_d()⁠: For discrete values.

  • ⁠scale_*_whitebox_c()⁠: For continuous values.

  • ⁠scale_*_whitebox_b()⁠: For binning continuous values.

Additionally, a color palette whitebox.colors() is provided. See also grDevices::terrain.colors() for details.

Additional parameters ... would be passed on to:

Note that tidyterra just documents a selection of these additional parameters, check the ggplot2 functions listed above to see the full range of parameters accepted by these scales.

Usage

scale_fill_whitebox_d(
  palette = "high_relief",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_colour_whitebox_d(
  palette = "high_relief",
  ...,
  alpha = 1,
  direction = 1,
  na.translate = FALSE,
  drop = TRUE
)

scale_fill_whitebox_c(
  palette = "high_relief",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_colour_whitebox_c(
  palette = "high_relief",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "colourbar"
)

scale_fill_whitebox_b(
  palette = "high_relief",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

scale_colour_whitebox_b(
  palette = "high_relief",
  ...,
  alpha = 1,
  direction = 1,
  na.value = "transparent",
  guide = "coloursteps"
)

whitebox.colors(n, palette = "high_relief", alpha = 1, rev = FALSE)

Arguments

palette

A valid palette name. The name is matched to the list of available palettes, ignoring upper vs. lower case. Values available are: "atlas", "high_relief", "arid", "soft", "muted", "purple", "viridi", "gn_yl", "pi_y_g", "bl_yl_rd", "deep".

...

Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale, ggplot2::binned_scale

breaks

One of:

  • NULL for no breaks

  • waiver() for the default breaks (the scale limits)

  • A character vector of breaks

  • A function that takes the limits as input and returns breaks as output. Also accepts rlang lambda function notation.

labels

One of:

  • NULL for no labels

  • waiver() for the default labels computed by the transformation object

  • A character vector giving labels (must be same length as breaks)

  • An expression vector (must be the same length as breaks). See ?plotmath for details.

  • A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

limits

One of:

  • NULL to use the default scale values

  • A character vector that defines possible values of the scale and their order

  • A function that accepts the existing (automatic) values and returns new ones. Also accepts rlang lambda function notation.

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

minor_breaks

One of:

  • NULL for no minor breaks

  • waiver() for the default breaks (one minor break between each major break)

  • A numeric vector of positions

  • A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation. When the function has two arguments, it will be given the limits and major breaks.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

nice.breaks

Logical. Should breaks be attempted placed at nice values instead of exactly evenly spaced between the limits. If TRUE (default) the scale will ask the transformation object to create breaks, and this may result in a different number of breaks than requested. Ignored if breaks are given explicitly.

alpha

The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction

Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed.

na.translate

Should NA values be removed from the legend? Default is TRUE.

drop

Should unused factor levels be omitted from the scale? The default (TRUE) removes unused factors.

na.value

Missing values will be replaced with this value. By default, tidyterra uses na.value = "transparent" so cells with NA are not filled. See also #120.

guide

A function used to create a guide or its name. See guides() for more information.

n

the number of colors (1\ge 1) to be in the palette.

rev

logical indicating whether the ordering of the colors should be reversed.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

Source

https://github.com/jblindsay/whitebox-tools, under MIT License. Copyright (c) 2017-2021 John Lindsay.

See Also

terra::plot(), ggplot2::scale_fill_viridis_c()

See also ggplot2 docs on additional ... parameters.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended, scale_grass, scale_hypso, scale_princess, scale_terrain

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

# Palette
plot(volcano2_rast, col = whitebox.colors(100))

library(ggplot2)
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_whitebox_c()

# Binned
ggplot() +
  geom_spatraster(data = volcano2_rast) +
  scale_fill_whitebox_b(breaks = seq(70, 200, 10), palette = "atlas")

# With discrete values
factor <- volcano2_rast %>% mutate(cats = cut(elevation,
  breaks = c(100, 120, 130, 150, 170, 200),
  labels = c(
    "Very Low", "Low", "Average", "High",
    "Very High"
  )
))


ggplot() +
  geom_spatraster(data = factor, aes(fill = cats)) +
  scale_fill_whitebox_d(na.value = "gray10", palette = "soft")


# Display all the whitebox palettes

pals <- c(
  "atlas", "high_relief", "arid", "soft", "muted", "purple",
  "viridi", "gn_yl", "pi_y_g", "bl_yl_rd", "deep"
)

# Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
  image(
    x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
    col = whitebox.colors(ncols, i), main = i,
    ylab = "", xaxt = "n", yaxt = "n", bty = "n"
  )
}
par(opar)

Subset layers/attributes of ⁠Spat*⁠ objects

Description

Select (and optionally rename) attributes/layers in ⁠Spat*⁠ objects, using a concise mini-language. See Methods.

Usage

## S3 method for class 'SpatRaster'
select(.data, ...)

## S3 method for class 'SpatVector'
select(.data, ...)

Arguments

.data

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

...

<tidy-select> One or more unquoted expressions separated by commas. Layer/attribute names can be used as if they were positions in the ⁠Spat*⁠ object, so expressions like x:y can be used to select a range of layers/attributes.

Value

A ⁠Spat*⁠ object of the same class than .data. See Methods.

terra equivalent

terra::subset()

Methods

Implementation of the generic dplyr::select() function.

SpatRaster

Select (and rename) layers of a SpatRaster. The result is a SpatRaster with the same extent, resolution and crs than .data. Only the number (and possibly the name) of layers is modified.

SpatVector

The result is a SpatVector with the selected (and possibly renamed) attributes on the function call.

See Also

dplyr::select(), terra::subset()

Other single table verbs: arrange.SpatVector(), filter.Spat, mutate.Spat, rename.Spat, slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on columns: glimpse.Spat, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), slice.Spat, summarise.SpatVector()

Examples

library(terra)

# SpatRaster method

spatrast <- rast(
  crs = "EPSG:3857",
  nrows = 10,
  ncols = 10,
  extent = c(100, 200, 100, 200),
  nlyr = 6,
  vals = seq_len(10 * 10 * 6)
)

spatrast %>% select(1)

# By name
spatrast %>% select(lyr.1:lyr.4)

# Rename
spatrast %>% select(a = lyr.1, c = lyr.6)

# SpatVector method

f <- system.file("extdata/cyl.gpkg", package = "tidyterra")

v <- vect(f)

v

v %>% select(1, 3)

v %>% select(iso2, name2 = cpro)

Subset cells/rows/columns/geometries using their positions

Description

slice() methods lets you index cells/rows/columns/geometries by their (integer) locations. It allows you to select, remove, and duplicate those dimensions of a ⁠Spat*⁠ object.

If you want to slice your SpatRaster by geographic coordinates use filter.SpatRaster() method.

It is accompanied by a number of helpers for common use cases:

  • slice_head() and slice_tail() select the first or last cells/geometries.

  • slice_sample() randomly selects cells/geometries.

  • slice_rows() and slice_cols() allow to subset entire rows or columns, of a SpatRaster.

  • slice_colrows() subsets regions of the SpatRaster by row and column position of a SpatRaster.

You can get a skeleton of your SpatRaster with the cell, column and row index with as_coordinates().

See Methods for details.

Usage

## S3 method for class 'SpatRaster'
slice(.data, ..., .preserve = FALSE, .keep_extent = FALSE)

## S3 method for class 'SpatVector'
slice(.data, ..., .preserve = FALSE)

## S3 method for class 'SpatRaster'
slice_head(.data, ..., n, prop, .keep_extent = FALSE)

## S3 method for class 'SpatVector'
slice_head(.data, ..., n, prop)

## S3 method for class 'SpatRaster'
slice_tail(.data, ..., n, prop, .keep_extent = FALSE)

## S3 method for class 'SpatVector'
slice_tail(.data, ..., n, prop)

## S3 method for class 'SpatRaster'
slice_min(
  .data,
  order_by,
  ...,
  n,
  prop,
  with_ties = TRUE,
  .keep_extent = FALSE,
  na.rm = TRUE
)

## S3 method for class 'SpatVector'
slice_min(.data, order_by, ..., n, prop, with_ties = TRUE, na_rm = FALSE)

## S3 method for class 'SpatRaster'
slice_max(
  .data,
  order_by,
  ...,
  n,
  prop,
  with_ties = TRUE,
  .keep_extent = FALSE,
  na.rm = TRUE
)

## S3 method for class 'SpatVector'
slice_max(.data, order_by, ..., n, prop, with_ties = TRUE, na_rm = FALSE)

## S3 method for class 'SpatRaster'
slice_sample(
  .data,
  ...,
  n,
  prop,
  weight_by = NULL,
  replace = FALSE,
  .keep_extent = FALSE
)

## S3 method for class 'SpatVector'
slice_sample(.data, ..., n, prop, weight_by = NULL, replace = FALSE)

slice_rows(.data, ...)

## S3 method for class 'SpatRaster'
slice_rows(.data, ..., .keep_extent = FALSE)

slice_cols(.data, ...)

## S3 method for class 'SpatRaster'
slice_cols(.data, ..., .keep_extent = FALSE)

slice_colrows(.data, ...)

## S3 method for class 'SpatRaster'
slice_colrows(.data, ..., cols, rows, .keep_extent = FALSE, inverse = FALSE)

Arguments

.data

A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

...

<data-masking> Integer row values. Provide either positive values to keep, or negative values to drop.

The values provided must be either all positive or all negative. Indices beyond the number of rows in the input are silently ignored. See Methods.

.preserve

Ignored for ⁠Spat*⁠ objects.

.keep_extent

Should the extent of the resulting SpatRaster be kept? See also terra::trim(), terra::extend().

n, prop

Provide either n, the number of rows, or prop, the proportion of rows to select. If neither are supplied, n = 1 will be used. If n is greater than the number of rows in the group (or prop > 1), the result will be silently truncated to the group size. prop will be rounded towards zero to generate an integer number of rows.

A negative value of n or prop will be subtracted from the group size. For example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop = -0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by

<data-masking> Variable or function of variables to order by. To order by multiple variables, wrap them in a data frame or tibble.

with_ties

Should ties be kept together? The default, TRUE, may return more rows than you request. Use FALSE to ignore ties, and return the first n rows.

na.rm

Logical, should cells that present a value of NA removed when computing slice_min()/slice_max()?. The default is TRUE.

na_rm

Should missing values in order_by be removed from the result? If FALSE, NA values are sorted to the end (like in arrange()), so they will only be included if there are insufficient non-missing values to reach n/prop.

weight_by

<data-masking> Sampling weights. This must evaluate to a vector of non-negative numbers the same length as the input. Weights are automatically standardised to sum to 1.

replace

Should sampling be performed with (TRUE) or without (FALSE, the default) replacement.

cols, rows

Integer col/row values of the SpatRaster

inverse

If TRUE, .data is inverse-masked to the given selection. See terra::mask().

Value

A ⁠Spat*⁠ object of the same class than .data. See Methods.

terra equivalent

terra::subset(), terra::spatSample()

Methods

Implementation of the generic dplyr::slice() function.

SpatRaster

The result is a SpatRaster with the crs and resolution of the input and where cell values of the selected cells/columns/rows are preserved.

Use .keep_extent = TRUE to preserve the extent of .data on the output. The non-selected cells would present a value of NA.

SpatVector

The result is a SpatVector where the attributes of the selected geometries are preserved. If .data is a grouped SpatVector, the operation will be performed on each group, so that (e.g.) slice_head(df, n = 5) will select the first five rows in each group.

See Also

dplyr::slice(), terra::spatSample().

You can get a skeleton of your SpatRaster with the cell, column and row index with as_coordinates().

If you want to slice by geographic coordinates use filter.SpatRaster().

Other single table verbs: arrange.SpatVector(), filter.Spat, mutate.Spat, rename.Spat, select.Spat, summarise.SpatVector()

Other dplyr verbs that operate on rows: arrange.SpatVector(), distinct.SpatVector(), filter.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, summarise.SpatVector()

Examples

library(terra)

f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
r <- rast(f)

# Slice first 100 cells
r %>%
  slice(1:100) %>%
  plot()

# Rows
r %>%
  slice_rows(1:30) %>%
  plot()

# Cols
r %>%
  slice_cols(-(20:50)) %>%
  plot()

# Spatial sample
r %>%
  slice_sample(prop = 0.2) %>%
  plot()


# Slice regions
r %>%
  slice_colrows(
    cols = c(20:40, 60:80),
    rows = -c(1:20, 30:50)
  ) %>%
  plot()

# Group wise operation with SpatVectors--------------------------------------
v <- terra::vect(system.file("ex/lux.shp", package = "terra"))


glimpse(v) %>% autoplot(aes(fill = NAME_1))

gv <- v %>% group_by(NAME_1)
# All slice helpers operate per group, silently truncating to the group size
gv %>%
  slice_head(n = 1) %>%
  glimpse() %>%
  autoplot(aes(fill = NAME_1))
gv %>%
  slice_tail(n = 1) %>%
  glimpse() %>%
  autoplot(aes(fill = NAME_1))
gv %>%
  slice_min(AREA, n = 1) %>%
  glimpse() %>%
  autoplot(aes(fill = NAME_1))
gv %>%
  slice_max(AREA, n = 1) %>%
  glimpse() %>%
  autoplot(aes(fill = NAME_1))

Summarise each group of a SpatVector down to one geometry

Description

summarise() creates a new SpatVector. It returns one geometry for each combination of grouping variables; if there are no grouping variables, the output will have a single geometry summarising all observations in the input and combining all the geometries of the SpatVector. It will contain one column for each grouping variable and one column for each of the summary statistics that you have specified.

summarise.SpatVector() and summarize.SpatVector() are synonyms

Usage

## S3 method for class 'SpatVector'
summarise(.data, ..., .by = NULL, .groups = NULL, .dissolve = TRUE)

## S3 method for class 'SpatVector'
summarize(.data, ..., .by = NULL, .groups = NULL, .dissolve = TRUE)

Arguments

.data

A SpatVector.

...

<data-masking> Name-value pairs of summary functions. The name will be the name of the variable in the result.

The value can be:

  • A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).

  • A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0. Please use reframe() for this instead.

.by

Ignored on this method ([Experimental] on dplyr).

.groups

See dplyr::summarise()

.dissolve

logical. Should borders between aggregated geometries be dissolved?

Value

A SpatVector.

terra equivalent

terra::aggregate()

Methods

Implementation of the generic dplyr::summarise() function.

SpatVector

Similarly to the implementation on sf this function can be used to dissolve geometries (with .dissolve = TRUE) or create MULTI versions of geometries (with .dissolve = FALSE). See Examples.

See Also

dplyr::summarise(), terra::aggregate()

Other single table verbs: arrange.SpatVector(), filter.Spat, mutate.Spat, rename.Spat, select.Spat, slice.Spat

Other dplyr verbs that operate on group of rows: count.SpatVector(), group-by.SpatVector, rowwise.SpatVector()

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat

Examples

library(terra)
library(ggplot2)

v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

# Grouped
gr_v <- v %>%
  mutate(start_with_s = substr(name, 1, 1) == "S") %>%
  group_by(start_with_s)


# Dissolving
diss <- gr_v %>%
  summarise(n = dplyr::n(), mean = mean(as.double(cpro)))

diss

autoplot(diss, aes(fill = start_with_s)) + ggplot2::ggtitle("Dissolved")

# Not dissolving
no_diss <- gr_v %>%
  summarise(n = dplyr::n(), mean = mean(as.double(cpro)), .dissolve = FALSE)

# Same statistic
no_diss

autoplot(no_diss, aes(fill = start_with_s)) +
  ggplot2::ggtitle("Not Dissolved")

Updated topographic information on Auckland's Maungawhau volcano

Description

Probably you already know the volcano dataset. This dataset provides updated information of Maungawhau (Mt. Eden) from Toitu Te Whenua Land Information New Zealand, the Government's agency that provides free online access to New Zealand’s most up-to-date land and seabed data.

Format

A matrix of 174 rows and 122 columns. Each value is the corresponding altitude in meters.

Note

Information needed for regenerating the original SpatRaster file:

  • resolution: c(5, 5)

  • extent: ⁠1756969, 1757579, 5917003, 5917873⁠ (xmin, xmax, ymin, ymax)

  • coord. ref. : NZGD2000 / New Zealand Transverse Mercator 2000 (EPSG:2193)

Source

Auckland LiDAR 1m DEM (2013).

DEM for LiDAR data from the Auckland region captured in 2013. The original data has been downsampled to a resolution of 5m due to disk space constrains.

Data License: CC BY 4.0.

See Also

volcano

Other datasets: cross_blended_hypsometric_tints_db, grass_db, hypsometric_tints_db, princess_db

Examples

data("volcano2")
filled.contour(volcano2, color.palette = hypso.colors, asp = 1)
title(main = "volcano2 data: filled contour map")

# Geo-tag
# Empty raster

volcano2_raster <- terra::rast(volcano2)
terra::crs(volcano2_raster) <- pull_crs(2193)
terra::ext(volcano2_raster) <- c(1756968, 1757576, 5917000, 5917872)
names(volcano2_raster) <- "volcano2"

library(ggplot2)

ggplot() +
  geom_spatraster(data = volcano2_raster) +
  scale_fill_hypso_c() +
  labs(
    title = "volcano2 SpatRaster",
    subtitle = "Georeferenced",
    fill = "Elevation (m)"
  )