Get started with the igoR package

This vignette is meant to provide useRs with an visual, explorable introduction to the capabilities of the igoR package.

The analysis would be based on those provided on (J. C. Pevehouse et al. 2020). For more information on the IGO data sets and additional downloads, see Intergovernmental Organizations (v3).

Note that the dyadic dataset is not provided in the package, due its size (~500 MB on Stata .dta format). However, igo_dyadic() function provides similar results.

Definitions

From J. Pevehouse, McManus, and Nordstrom (2019):

What is an IGO?

The definition of an Intergovernmental Organization (IGO) on the original dataset is based on the following criteria:

  1. An IGO must consist of at least three members of the COW-defined state system.
  2. An IGO must hold regular plenary sessions at least once every ten years
  3. An IGO must possess a permanent secretariat and corresponding headquarters.

When does an IGO actually begin?

The data sets begins to code an IGO by identifying the first year in which the organization functions. In some cases, individual members are listed by year of accession or signature.

When does an IGO die?

Version 3.0 of the IGO data set uses the following criteria:

  • An organization is considered terminated when the following words were used to describe the context of the organization:
    • Replaced;
    • Succeeded;
    • Superseded;
    • Integrated;
    • Merged;
    • Dies.

Analysis

This section provides some quick analysis based on the figures of J. C. Pevehouse et al. (2020).

Initial Setup

library(igoR)

# Additional libraries
library(ggplot2)
library(dplyr)

In first place, we create a custom ggplot2::theme() named theme_igor, that we would apply to all our figures:

theme_igor <- theme(
  axis.title = element_blank(),
  axis.line.x.bottom = element_line("black"),
  axis.line.y.left = element_line("black"),
  axis.text = element_text(color = "black", family = "sans"),
  axis.text.y.left = element_text(angle = 90, hjust = 0.5),
  legend.position = "bottom",
  legend.title = element_blank(),
  legend.key = element_blank(),
  legend.key.width = unit(2, "cm"),
  legend.text = element_text(family = "sans", size = 11.5),
  legend.box.background = element_rect(color = "black", linewidth = 1),
  legend.spacing = unit(1.2 / 100, "npc"),
  plot.background = element_rect("grey90"),
  plot.margin = unit(rep(0.5, 4), "cm"),
  panel.background = element_rect("white"),
  panel.grid = element_blank(),
  panel.border = element_rect(fill = NA, colour = "grey90"),
  panel.grid.major.y = element_line("grey90")
)

IGOs overview

The following code extracts the number of IGOs and states included on this package. The years available are 1816 to 2014.

# Summarize
igos_by_year <- igo_year_format3 %>%
  group_by(year) %>%
  summarise(value = n(), .groups = "keep") %>%
  mutate(variable = "Total IGOs")

countries_by_year <- state_year_format3 %>%
  group_by(year) %>%
  summarise(value = n(), .groups = "keep") %>%
  mutate(variable = "Number of COW states")

all_by_year <- igos_by_year %>%
  bind_rows(countries_by_year) %>%
  # For labelling the plot
  mutate(variable = factor(variable,
    levels = c("Total IGOs", "Number of COW states")
  ))


# Plot
ggplot(all_by_year, aes(x = year, y = value)) +
  geom_line(color = "black", aes(linetype = variable)) +
  scale_x_continuous(limits = c(1800, 2014)) +
  scale_linetype_manual(values = c("solid", "dashed")) +
  geom_vline(xintercept = c(1945, 1989)) +
  ylim(0, 400) +
  theme_igor
Figure 1. IGOs and states in the world system, 1816-2014

Figure 1. IGOs and states in the world system, 1816-2014

IGO Births and deaths

This plot shows how many IGOs were “born” and “died” on each year

# Births and deads by year

df <- igo_search()

births <- df %>%
  mutate(year = sdate) %>%
  group_by(year) %>%
  summarise(value = n(), .groups = "keep") %>%
  mutate(variable = "IGO Births")

deads <- df %>%
  mutate(year = deaddate) %>%
  group_by(year) %>%
  summarise(value = n(), .groups = "keep") %>%
  mutate(variable = "IGO Deaths")


births_and_deads <- births %>%
  bind_rows(deads) %>%
  filter(!is.na(year))

# Plot
ggplot(births_and_deads, aes(x = year, y = value)) +
  geom_line(color = "black", aes(linetype = variable)) +
  scale_linetype_manual(values = c("solid", "dashed")) +
  scale_x_continuous(
    limits = c(1815, 2015),
    breaks = seq(1815, 2015, by = 25)
  ) +
  ylim(0, 15) +
  theme_igor
Figure 2. Birth and death rates of IGOs, 1816-2014

Figure 2. Birth and death rates of IGOs, 1816-2014

IGOs across regions

A plot with the number of IGOs by region. The definition of region is based on the original definition by J. C. Pevehouse et al. (2020), as provided in the complementary replication data set (PRIO 2020):

# crossreg and universal codes not included

asia <- c(
  550, 560, 570, 580, 590, 600, 610, 640, 650, 660,
  670, 725, 750, 825, 1030, 1345, 1400, 1530, 1532, 2300,
  2770, 3185, 3330, 3560, 3930, 4115, 4150, 4160, 4170,
  4190, 4200, 4220, 4265, 4440
)

middle_east <- c(
  370, 380, 390, 400, 410, 420, 430, 440, 450, 460,
  470, 490, 500, 510, 520, 1110, 1410, 1990, 2000,
  2220, 3450, 3800, 4140, 4270, 4380
)

europe <- c(
  20, 300, 780, 800, 832, 840, 860, 1020, 1050, 1070, 1080,
  1125, 1140, 1390, 1420, 1440, 1563, 1565, 1580, 1585, 1590,
  1600, 1610, 1620, 1630, 1640, 1645, 1653, 1660, 1670, 1675,
  1680, 1690, 1700, 1710, 1715, 1720, 1730, 1740, 1750, 1760,
  1770, 1780, 1790, 1800, 1810, 1820, 1830, 1930, 1970, 1980,
  2310, 2325, 2345, 2440, 2450, 2550, 2575, 2610, 2650, 2705,
  2890, 2972, 3010, 3095, 3230, 3290, 3360, 3485, 3505, 3585,
  3590, 3600, 3610, 3620, 3630, 3640, 3650, 3655, 3660, 3665,
  3762, 3810, 3855, 3860, 3910, 4000, 4350, 4450, 4460, 4510,
  4520, 4540
)

africa <- c(
  30, 40, 50, 60, 80, 90, 100, 110, 115, 120, 125, 130, 140,
  150, 155, 160, 170, 180, 190, 200, 210, 225, 240, 250, 260, 280,
  290, 690, 700, 710, 940, 1060, 1150, 1170, 1260, 1290, 1310,
  1320, 1330, 1340, 1355, 1430, 1450, 1460, 1470, 1475, 1480,
  1500, 1510, 1520, 1870, 2080, 2090, 2230, 2330, 2795, 3300,
  3310, 3470, 3480, 3510, 3520, 3570, 3740, 3760, 3761, 3790,
  3820, 3875, 3905, 3970, 4010, 4030, 4050, 4055, 4080, 4110,
  4120, 4130, 4230, 4240, 4250, 4251, 4340, 4365, 4480, 4485,
  4490, 4500, 4501, 4503
)

americas <- c(
  310, 320, 330, 340, 720, 760, 815, 875, 880, 890, 900,
  910, 912, 913, 920, 950, 970, 980, 990, 1000, 1010, 1095,
  1130, 1486, 1489, 1490, 1860, 1890, 1920, 1950, 2070, 2110,
  2120, 2130, 2140, 2150, 2160, 2170, 2175, 2180, 2190, 2200,
  2203, 2206, 2210, 2260, 2340, 2490, 2560, 2980, 3060,
  3340, 3370, 3380, 3390, 3400, 3410, 3420, 3428, 3430, 3670,
  3680, 3812, 3830, 3880, 3890, 3900, 3925, 3980, 4070, 4100,
  4260, 4280, 4370
)

regions <- igo_search() %>%
  mutate(region = case_when(
    ionum %in% africa ~ "Africa",
    ionum %in% americas ~ "Americas",
    ionum %in% asia ~ "Asia",
    ionum %in% europe ~ "Europe",
    ionum %in% middle_east ~ "Middle East",
    TRUE ~ NA
  )) %>%
  select(ioname, region)

After we have created a data frame with the regions, we can classify the IGOs by region.

# regions dataset created on previous chunk

# All IGOs
alligos <- igo_year_format3 %>%
  select(ioname, year)

regionsum <- alligos %>%
  left_join(regions) %>%
  group_by(year, region) %>%
  summarise(value = n(), .groups = "keep") %>%
  filter(!is.na(region)) %>%
  # For plotting
  mutate(region = factor(region,
    levels = c(
      "Asia", "Europe", "Africa", "Americas",
      "Middle East"
    )
  ))


# Plot
ggplot(regionsum, aes(x = year, y = value)) +
  geom_line(color = "black", aes(linetype = region)) +
  scale_linetype_manual(
    values = c("solid", "dashed", "dotted", "dotdash", "longdash")
  ) +
  guides(linetype = guide_legend(ncol = 2, byrow = TRUE)) +
  ylim(0, 80) +
  scale_x_continuous(
    limits = c(1815, 2015),
    breaks = seq(1815, 2015, by = 25)
  ) +
  theme_igor
Figure 3. IGO counts across regions, 1816-2014

Figure 3. IGO counts across regions, 1816-2014

Selected Countries: Asia

Number of memberships of a country. We select here five countries on Asia: India, China, Pakistan, Indonesia and Bangladesh.

asia5_cntries <- c("China", "India", "Pakistan", "Indonesia", "Bangladesh")

# Five countries of Asia
asia5_igos <- igo_state_membership(
  state = asia5_cntries, year = 1865:2014,
  status = "Full Membership"
)

asia5 <- asia5_igos %>%
  group_by(statenme, year) %>%
  summarise(values = n(), .groups = "keep") %>%
  mutate(statenme = factor(statenme, levels = asia5_cntries))

# Plot
ggplot(asia5, aes(x = year, y = values)) +
  geom_line(color = "black", aes(linetype = statenme)) +
  scale_linetype_manual(
    values = c("solid", "dashed", "dotted", "dotdash", "longdash")
  ) +
  guides(linetype = guide_legend(ncol = 3, byrow = TRUE)) +
  theme(axis.title.y.left = element_text(
    family = "sans", size = 12,
    margin = margin(r = 6)
  )) +
  scale_x_continuous(
    limits = c(1865, 2015),
    breaks = seq(1865, 2015, by = 25)
  ) +
  scale_y_continuous("Number of memberships",
    breaks = seq(0, 100, 20),
    limits = c(0, 100)
  ) +
  theme_igor
Figure 4. IGO membership: five states in Asia, 1865-2014

Figure 4. IGO membership: five states in Asia, 1865-2014

Shared memberships

Number of shared full memberships between Spain and four selected countries:

selected_countries <- c("France", "Morocco", "China", "USA")

spain_selected <- igo_dyadic("Spain", selected_countries)

# Compute number of shared memberships
spain_selected <- spain_selected %>%
  rowwise() %>%
  mutate(values = sum(c_across(aaaid:wassen) == 1))

# Plot
ggplot(spain_selected, aes(x = year, y = values)) +
  geom_line(color = "black", aes(linetype = statenme2)) +
  scale_linetype_manual(values = c("solid", "dashed", "dotted", "dotdash")) +
  guides(linetype = guide_legend(ncol = 2, byrow = TRUE)) +
  theme(axis.title.y.left = element_text(
    family = "sans", size = 10,
    margin = margin(r = 6)
  )) +
  scale_x_continuous(
    limits = c(1815, 2015),
    breaks = seq(1815, 2015, by = 25)
  ) +
  scale_y_continuous("Number of memberships",
    breaks = seq(0, 110, 20),
    limits = c(0, 110)
  ) +
  theme_igor +
  geom_vline(xintercept = 1939, alpha = 0.2) +
  annotate("label", x = 1938, y = 60, size = 3, label = "Spanish \nCivil War") +
  geom_vline(xintercept = 1978, alpha = 0.2) +
  annotate("label",
    x = 1970, y = 100, size = 3,
    label = "Constitution \nof Spain"
  )
Figure 5. Number of IGOs with full shared memberships with Spain (selected countries), 1816-2014

Figure 5. Number of IGOs with full shared memberships with Spain (selected countries), 1816-2014

References

Pevehouse, Jon CW, Timothy Nordstrom, Roseanne W McManus, and Anne Spencer Jamison. 2020. “Tracking Organizations in the World: The Correlates of War IGO Version 3.0 Datasets.” Journal of Peace Research 57 (3): 492–503. https://doi.org/10.1177/0022343319881175.
Pevehouse, Jon, Roseanne McManus, and Timothy Nordstrom. 2019. “Codebook for Correlates of War 3 International Governmental Organizations Data Set Version 3.0.” https://correlatesofwar.org/wp-content/uploads/IGO-Codebook_v3_short-copy.pdf.
PRIO. 2020. “Replication Datasets: Journal of Peace Research.” Peace Research Institute Oslo; Online. 2020. https://www.prio.org/journals/jpr/replicationdata.